| 研究生: |
李映真 Li, Ying-Zhen |
|---|---|
| 論文名稱: |
萃取、純化細菌內細胞壁及其相關片段並應用於先天免疫反應的探討 Fractionation of bacterial cell wall components from microbes and their innate immune studies |
| 指導教授: |
鄭偉杰
Cheng, Wei-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 微生物細胞壁 、肽聚醣相關分子群 、病原相關分子模式 、模式識別受體 、免疫調節劑 |
| 外文關鍵詞: | Microbial cell wall, Peptidoglycan, PGN fragments, Pathogen-associated molecular patterns, Pattern recognition receptors, Immunomodulators |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
宿主可透過先天性免疫系統受體來識別微生物並產生防衛機制,這些微生物單元稱作病原相關分子模式 (Pathogen-associated molecular patterns, PAMPs)。當中肽聚醣 (Peptidoglycan, PGN) 為組成微生物細胞壁的獨有成分,是宿主識別的良好目標。然而肽聚醣結構存有高度變異性與複雜性,使鑑定其生物活性上有許多困難之處。透過相關代謝物的製備,將有助於了解該聚合物與宿主間的相互關係,以及相關免疫療法開發。
本論文分為三部分,首先,從三種革蘭氏陽性菌,枯草桿菌、李斯特菌與鼠李糖菌中取得肽聚醣,及細胞壁相關高分子,壁磷壁酸 (Wall teichoic acids, WTAs) 與膜磷壁酸 (Lipoteichoic acids, LTAs),進行結構、純度與活性鑑定,以評斷取得物的品質。第二,建立一利用多種肽聚醣水解與修飾酵素作為裁切工具,與分離方法來收集其衍生片段之策略。產生約六十個不同成分的肽聚醣片段庫,並用於評估肽聚醣對宿主免疫之誘發能力。第三,評估上述取得的材料如肽聚醣以及水解片段庫,在兩個潛在的肽聚醣受體上活化能力,如在類鐸受體第二型 (Toll-like receptor 2, TLR2),上所產生的免疫反應。
本論文利用天然微生物細胞壁為起始材料並裁切而成的肽聚醣片段庫,有別於一般化學合成方法取得的較小片段的精確分子。此全新的策略收集的肽聚醣片段庫,可拓展肽聚醣相關分子群 (Chemical space),尋找更多有價值分子的可能性。
Microbial factors can be sensed by the host to activate proper immune responses for defense against bacteria, as pathogen-associated molecular patterns (PAMPs). Among them, peptidoglycan (PGN), a major component of bacterial cell wall is a central example of PAMPs detected by host. To identify the multifaceted functions of PGN to host, bringing this highly heterogeneous, strain-specific molecule to the molecular level is crucial.
Herein, cell wall-related products were individually extracted from Bacillus subtilis, Listeria monocytogenes, and Lactobacillus rhamnosus GG with the characterization of chemical structures and biological functions. Furthermore, a new strategy was developed to prepare PGN fragments by enzymatic degradation and fractionations. The collected fractions and cell wall-related polymers provided a collection of 60 samples and the ability to activate innate immune responses via potential pattern recognition receptors (PRRs), and toll-like receptor 2 (TLR2) was studied. In this thesis, PGNs extracted from natural sources were utilized to develop a novel strategy to prepare the derived fragments by enzymatic degradation and fractionations. The collection is different from organic synthesis which mainly focused on small and defined molecules but provides a unique PGN chemical space coverage, allowing us to identify the novel bioactive parts or molecules of PGN.
1. Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506.
2. Zmora, N.; Soffer, E.; Elinav, E. Transforming medicine with the microbiome. Sci. Transl. Med. 2019, 11.
3. Bastos, P. A. D.; Wheeler, R.; Boneca, I. G. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol. Rev. 2021, 45.
4. Wolf, A. J.; Underhill, D. M. Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 2018, 18, 243–254.
5. Porfírio, S.; Carlson, R. W.; Azadi, P. Elucidating Peptidoglycan Structure: An Analytical Toolset. Trends microbial. 2019, 27, 607–622.
6. Wang, Q.; Matsuo, Y.; Pradipta, A. R.; Inohara, N.; Fujimoto, Y.; Fukase, K. Synthesis of characteristic Mycobacterium peptidoglycan (PGN) fragments utilizing with chemoenzymatic preparation of meso-diaminopimelic acid (DAP), and their modulation of innate immune responses. Org. Biomol. Chem. 2016, 14, 1013–1023.
7. Boneca, I. G.; Dussurget, O.; Cabanes, D.; Nahori, M.-A.; Sousa, S.; Lecuit, M.; Psylinakis, E.; Bouriotis, V.; Hugot, J.-P.; Giovannini, M.; Coyle, A.; Bertin, J.; Namane, A.; Rousselle, J.-C.; Cayet, N.; Prévost, M.-C.; Balloy, V.; Chignard, M.; Philpott, D. J.; Cossart, P.; Girardin, S. E. A critical role for peptidoglycan N-deacetylation inListeriaevasion from the host innate immune system. PNAS 2007, 104, 997–1002.
8. Do, T.; Page, J. E.; Walker, S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J. Biol. Chem. 2020, 295, 3347–3361.
9. Davis, K. M.; Nakamura, S.; Weiser, J. N. Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J. Clin. Investig. 2011, 121, 3666–3676.
10. Brown, S.; Santa Maria, J. P.; Walker, S. Wall Teichoic Acids of Gram-Positive Bacteria. Annu. Rev. Microbiol. 2013, 67, 313–336.
11. Chapot-Chartier, M.-P.; Kulakauskas, S. Cell wall structure and function in lactic acid bacteria. Microb. Cell Factories 2014, 13, S9.
12. Van Der Es, D.; Hogendorf, W. F. J.; Overkleeft, H. S.; Van Der Marel, G. A.; Codée, J. D. C. Teichoic acids: synthesis and applications. Chem. Soc. Rev. 2017, 46, 1464–1482.
13. Claes, I. J.; Segers, M. E.; Verhoeven, T. L.; Dusselier, M.; Sels, B. F.; De Keersmaecker, S. C.; Vanderleyden, J.; Lebeer, S., Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb. Cell Factories 2012, 11, 161.
14. Weidenmaier, C.; Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol. 2008, 6, 276–287.
15. Deininger, S.; Stadelmaier, A.; Von Aulock, S.; Morath, S.; Schmidt, R. R.; Hartung, T. Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J. Immunol. 2003, 170, 4134–4138.
16. Morath, S.; Stadelmaier, A.; Geyer, A.; Schmidt, R. R.; Hartung, T. Synthetic Lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. J. Exp. Med. 2002, 195, 1635–1640.
17. Han, S. H.; Kim, J. H.; Martin, M.; Michalek, S. M.; Nahm, M. H. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect. Immun. 2003, 71, 5541–5548.
18. Lebeer, S.; Claes, I. J. J.; Vanderleyden, J. Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends Microbiol. 2012, 20, 5–10.
19. Van Dalen, R.; Peschel, A.; Van Sorge, N. M. Wall teichoic acid in Staphylococcus aureus host interaction. Trends Microbiol. 2020, 28, 985–998.
20. de Oliviera Nascimento, L.; Massari, P.; Wetzler, L. The Role of TLR2 in infection and immunity. Front. immunol. 2012, 3.
21. Travassos, L. H.; Girardin, S. E.; Philpott, D. J.; Blanot, D.; Nahori, M.-A.; Werts, C.; Boneca, I. G. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 2004, 5, 1000–1006.
22. Inamura, S.; Fujimoto, Y.; Kawasaki, A.; Shiokawa, Z.; Woelk, E.; Heine, H.; Lindner, B.; Inohara, N.; Kusumoto, S.; Fukase, K. Synthesis of peptidoglycan fragments and evaluation of their biological activity. Org. Biomol. Chem. 2006, 4, 232–242.
23. Dziarski, R.; Gupta, D. Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: a reevaluation. Infect. Immun. 2005, 73, 5212–5216.
24. Asong, J.; Wolfert, M. A.; Maiti, K. K.; Miller, D.; Boons, G.-J. Binding and cellular activation studies reveal that Toll-like receptor 2 can differentially recognize peptidoglycan from Gram-positive and Gram-negative bacteria. J. Biol. Chem. 2009, 284, 8643–8653.
25. Girardin, S. E.; Travassos, L. H.; Hervé, M.; Blanot, D.; Boneca, I. G.; Philpott, D. J.; Sansonetti, P. J.; Mengin-Lecreulx, D. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 2003, 278, 41702–41708.
26. Brown, G. D.; Willment, J. A.; Whitehead, L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 2018, 18, 374–389.
27. Simpson, M. E.; Petri, W. A. TLR2 as a therapeutic target in bacterial infection. Trends Mol. 2020, 26, 715–717.
28. Chen, S.-T.; Li, F.-J.; Hsu, T.-Y.; Liang, S.-M.; Yeh, Y.-C.; Liao, W.-Y.; Chou, T.-Y.; Chen, N.-J.; Hsiao, M.; Yang, W.-B.; Hsieh, S.-L., CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat. Commun. 2017, 8.
29. Griffin, M. E.; Hespen, C. W.; Wang, Y. C.; Hang, H. C. Translation of peptidoglycan metabolites into immunotherapeutics. Clin. Transl. Immunol. 2019, 8.
30. Cheng, W.-C.; You, T.-Y.; Teo, Z.-Z.; Sayyad, A. A.; Maharana, J.; Guo, C.-W.; Liang, P.-H.; Lin, C.-S.; Meng, F.-C. Further Insights on Structural Modifications of Muramyl Dipeptides to Study the Human NOD2 Stimulating Activity. Asian J. Chem. 2020, 15, 3836–3844.
31. Guo, C. W.; Chen, K. T.; You, T. Y.; Lin, C. C.; Cheng, W. C. Synthesis and evaluation of diverse N‐Substituted disaccharide dipeptides for human NOD2 stimulation activity. Asian J. Chem. 2022, 13, 6233–6243.
32. Chen, P. T.; Lin, C. K.; Tsai, C. J.; Huang, D. Y.; Nien, F. Y.; Lin, W. W.; Cheng, W. C. Expeditious synthesis of enantiopure, orthogonally protected bis-α-amino acids (OPBAAs) and their use in a study of Nod1 stimulation. Asian. J. Chem. 2015, 10, 474–482.
33. Chen, K. T.; Huang, D. Y.; Chiu, C. H.; Lin, W. W.; Liang, P. H.; Cheng, W. C. Synthesis of diverse N-substituted muramyl dipeptide derivatives and their use in a study of human NOD2 stimulation activity. Chem. 2015, 21, 11984–11988.
34. de Jonge, B. L.; Chang, Y. S.; Gage, D.; Tomasz, A. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J. Bio. Chem. 1992, 267, 11248–11254.
35. Atrih, A.; Bacher, G.; Allmaier, G.; Williamson, M. P.; Foster, S. J. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J. Bacteriol. 1999, 181, 3956–3966.
36. Girardin, S. E.; Boneca, I. G.; Viala, J.; Chamaillard, M.; Labigne, A.; Thomas, G.; Philpott, D. J.; Sansonetti, P. J. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003, 278, 8869–8872.
37. Eugster, M. R.; Loessner, M. J. Rapid analysis of Listeria monocytogenes cell wall teichoic acid carbohydrates by ESI-MS/MS. PLoS ONE 2011, 6, e21500.
38. Kho, K.; Meredith Timothy, C.; Schneewind, O. Salt-induced stress stimulates a lipoteichoic acid-specific three-component glycosylation system in Staphylococcus aureus. J. Bacteriol. 2018, 200, e00017–18.
39. Morath, S.; Geyer, A.; Hartung, T. Structure–function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J. Exp. Med. 2001, 193, 393–398.
40. Kühner, D.; Stahl, M.; Demircioglu, D. D.; Bertsche, U. From cells to muropeptide structures in 24 h: peptidoglycan mapping by UPLC-MS. Sci. Rep. 2014, 4, 7494.
41. Claes, I. J. J.; Schoofs, G.; Regulski, K.; Courtin, P.; Chapot-Chartier, M.-P.; Rolain, T.; Hols, P.; Von Ossowski, I.; Reunanen, J.; De Vos, W. M.; Palva, A.; Vanderleyden, J.; De Keersmaecker, S. C. J.; Lebeer, S. Genetic and biochemical characterization of the cell wall hydrolase activity of the major secreted protein of Lactobacillus rhamnosus GG. PLoS ONE 2012, 7, e31588.
42. Aubry, C.; Goulard, C.; Nahori, M.-A.; Cayet, N.; Decalf, J.; Sachse, M.; Boneca, I. G.; Cossart, P.; Dussurget, O. OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. J. Infect. Dis. 2011, 204, 731–740.
43. Walter, A.; Unsleber, S.; Rismondo, J.; Jorge, A. M.; Peschel, A.; Gründling, A.; Mayer, C. Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ. J. biol. chem. 2020, 295, 4024–4034.
44. Rismondo, J.; Percy, M. G.; Gründling, A. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. J. Biol. chem. 2018, 293, 3293–3306.
45. Morath, S.; Geyer, A.; Spreitzer, I.; Hermann, C.; Hartung, T. Structural decomposition and heterogeneity of commercial lipoteichoic acid preparations. Infect. Immun. 2002, 70, 938–944.
46. Draing, C.; Pfitzenmaier, M.; Zummo, S.; Mancuso, G.; Geyer, A.; Hartung, T.; Von Aulock, S. Comparison of Lipoteichoic Acid from Different Serotypes of Streptococcus pneumoniae. J. Biol. Chem. 2006, 281, 33849–33859.
47. Suvorov, M.; Lee, M.; Hesek, D.; Boggess, B.; Mobashery, S. Lytic transglycosylase MltB of Escherichia coli and its role in recycling of peptidoglycan strands of bacterial cell wall. J. Am. Chem. Soc. 2008, 130, 11878–11879.
48. Uehara, T.; Park James, T., An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J. Bacteriol. 2007, 189, 5634–5641.
49. Margot, P.; Pagni, M.; Karamata, D. Bacillus subtilis 168 gene lytF encodes a γ-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD. Microbiol. 1999, 145, 57–65.
50. Fukushima, T.; Kitajima, T.; Yamaguchi, H.; Ouyang, Q.; Furuhata, K.; Yamamoto, H.; Shida, T.; Sekiguchi, J. Identification and characterization of novel cell wall hydrolase CwlT: a two-domain autolysin exhibiting N-acetylmuramidase and D,L-endopeptidase activities. J. Biol. Chem. 2008, 283, 11117–11125.
51. Kobayashi, K.; Sudiarta, I. P.; Kodama, T.; Fukushima, T.; Ara, K.; Ozaki, K.; Sekiguchi, J., Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J. Biol. Chem. 2012, 287, 9765–9776.
52. Bersch, K. L.; DeMeester, K. E.; Zagani, R.; Chen, S.; Wodzanowski, K. A.; Liu, S.; Mashayekh, S.; Reinecker, H.-C.; Grimes, C. L. Bacterial peptidoglycan fragments differentially regulate innate immune signaling. ACS Cent. Sci. 2021, 7, 688–696.
53. Tawaratsumida, K.; Furuyashiki, M.; Katsumoto, M.; Fujimoto, Y.; Fukase, K.; Suda, Y.; Hashimoto, M. Characterization of N-terminal structure of TLR2-activating lipoprotein in Staphylococcus aureus. J. Biol. Chem. 2009, 284, 9147–9152.
54. Hashimoto, M.; Matsushima, H.; Suparthana, I. P.; Ogasawara, H.; Yamamoto, H.; Teng, C.; Sekiguchi, J. Digestion of peptidoglycan near the cross-link is necessary for the growth of Bacillus subtilis. Microbiol. 2018, 164, 299–307.
校內:2027-09-15公開