| 研究生: |
郭治平 Kuo, Chih-Ping |
|---|---|
| 論文名稱: |
光通訊布雷格光纖光柵濾波器之溫度補償封裝設計 Design for Temperature Compensated Package of Fiber Bragg Grating filter in Optical Fiber Communication System |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 溫度補償技術(Temperature Compensation) 、光纖(Optical Fibers) 、布雷格光纖光柵(Bragg Grating Fibers) |
| 外文關鍵詞: | Temperature Compensations, Athermal Package, Fiber Bragg Grating, Optical Fibers |
| 相關次數: | 點閱:161 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在光纖通訊網路不斷的發展成長潮流中,快速高容量的光纖網路傳輸需求亦殷切無比,而高密度波長多工器(DWDM)之發展已成為必然之趨勢。由於光纖光柵具有低插入損失、窄頻寬及高反射率等優點,實為應用在DWDM系統之一理想的反射式濾波器。而目前限制光纖光柵在商用發展的一個主要原因為光纖光柵對溫度的靈敏性,其值約為0.01 nm/℃。
本論文設計了三種用於校正布雷格光纖光柵之溫度補償裝置。該等裝置係在一基底上固定一金屬,並將布雷格光纖光柵在高溫狀態下固化至基底及/或金屬上。由於基底和金屬的熱膨脹係數不同,利用其熱膨脹程度的差異達到對布雷格光纖光柵負溫度膨脹的效果進而補償其在溫度變化中產生的波長飄移。本研究製得的布雷格光纖光柵溫度補償裝置具有架構簡單、可大量製造及製程簡化之優點。在製程上,應用高溫固化AB膠在高溫下將布雷格光纖光柵固定在裝置上,回到室溫時金屬將收縮而使布雷格光纖光柵產生張力效果,如此不需要特殊複雜的夾置具來施以預負載,同時將該等裝置在執行高溫固化後,繼續置於高溫下達一預定時間,俾同時對布雷格光纖光柵進行退火(annealing)程序,因而更進一步簡化其製程。本溫度補償裝置已經成功的使布雷格光纖光柵之中心波長飄移由0.01 nm/℃減為0.001 nm/℃。
Optical fiber Bragg gratings (FBGs) are expected to be important components in optical communication systems, especially in dense wavelength division multiplexer (DWDM) networks. One of the important applications is the fiber Bragg grating filter in DWDM systems. However, the thermal sensitivity of the fiber Bragg grating (FBG) will cause some serious problem in DWDM systems. This thesis presents three configurations of athermal packages for compensating Bragg wavelength of an optical fiber Bragg grating (FBG) for temperature deviation. Usually, the pre-loading mechanism is necessary in packaging the FBG onto the bimaterial devices. However, through the design of a unique bonding process, the pre-loading mechanism in packaging could be eliminated.
During the manufacturing processes, the AB thermally cured adhesive is used to affix the FBG to the device under a thermal state. In doing this way, the FBG affixed on the devices will be on tension when the temperature drops down to the room temperature. On the other hand, the devices can also be placed continuously under a thermal state, after the process of thermal curing, for a pre-determined period of time so as to perform annealing to the FBG, thereby, further simplifying the manufacturing process. As a result, we had successfully reduced the thermal variability of FBGs from 0.01 nm/℃ to 0.001 nm/℃.
Banerjee, P.P., and Poon, T.C., Principles of Applied Optics, Aksen Associates, 1991.
Bhatgadde, L.G., Joseph, S., and Kulkarni, S.C., “Electroless Copper/Nickel/Gold Plating of Ferrite Substrates,” Metal Finishing, pp. 45-51, 1996.
Bilodeau, F., Johnson, D.C., Theriault, S., Malo, B., Albert, J., and Hill, K.O., “An All-Fiber Dense-Wavelength-Division Multiplexer/ Memultiplexer Using Photoimprinted Bragg Gratings” IEEE Photon. Technol. Lett., Vol. 7, No. 4, pp. 388-390, 1995.
Born, B. and Wolf, E., Principles of Optics, New York: Pergamon, 1987.
Erdogan, T., “Fiber Grating Spectra,” IEEE J. Lightwave Technol., Vol. 15, No. 8, pp. 1277-1294, 1997.
Fleming, D.A., Johnson, S.W., and Lemaire, P.J., “Article Comprising a Temperature Compensated Optical Fiber Refractive Index Grating,” U.S. Patent 5,694,503 (2 December 1997)
Hill, K. O. and Gerald, M., “Fiber Bragg Grating Technology Fundamentals and Overview,” IEEE J. Lightwave Technol., Vol. 15, No. 8, pp. 1263-1276, 1997.
Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C. and Albert, J., “Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Through a Phase Mask,” Appl. Phys. Lett., 62(10), pp. 1035-1037, 1993.
Huang, L.J., “Ni, Cu-Ni 金屬鍍層光纖之製作及機械性質量測”, Master Thesis of Private Chung Hua University, 2001.
Kersey, A.D., Davis, M.A., Patrick, H.J., LeBlanc, M., Koo, K.P., Askins, C.G., Putnam, M.A., and Friebele, E.J., “Fiber Grating Sensors,” Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1442-1463, 1997.
Lo, Y.L., and Kuo, C.P., “Packaging a Fiber Bragg Grating Without Preloading In a Simple Athermal Bimaterial Device,” Accepted by IEEE Transactions on Advanced Packaging, 2002.
Lo, Y.L., and Xiao, F.Y., “Measurements of Corrosion and Temperature Using A Single-Pitch Bragg Grating Fiber Sensor,” Journal of Intelligent Material Systems and Structures, Vol. 9, pp. 800-807, 1998.
Lo, Y.L., Yan, T.Y., and Kuo, C.P., “Self-Referenced Intensity Based Fiber Optic Sensor System Using Fiber Bragg Gratings,” SPIE, Optical Engineering, Vol. 41, No. 5, pp. 1087-1092, 2002.
Malo, B., Hill, K. O., Bilodeau, F., Johnson, D. C. and Albert, J., “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fibre Using Single Excimer Pulse Refractive Index Modification Techniques,” Electronics Letters, Vol. 29, No. 18, pp. 1668-1669, 1993.
Meltz, G., Morey, W.W., and Glenn, W.H., “Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method,” Optics letters, Vol. 14, pp. 823-825, 1989.
Morey, W.W., and Glomb, W.L., “Incorporated Bragg Filter Temperature Compensated Optical Wavelength Device,” U.S. Patent 5,042,898 (27 August 1991)
Ota, I., Tsuda, T., Shinozaki, A., Yodo, S., Ota, T., Shigematsu, T., and Ibusuki, Y., “Development of Optical Fiber Grating for WDM Systems,” Furukawa Review, No. 19, pp. 35-40, 2000.
Othonos, A. and Kalli, K. , Fiber Bragg Grating, Arech House, 1999.
Pan, J.J., Ma, P., and Shi, Y., “Ultra-Stable Temperature Compensated Package of Steep Skirt Fiber Bragg Grating for Dense WDM,” in Proc. Nat. Fiber Opt. Eng. Conf., San Diego, CA, pp. 357-364, 1997.
Tsai, H.H., Jang, W.Y., and Yeh, F.F., “Central Wavelength Tunable Mechanism for Temperature Compensated Package of Fiber Bragg Gratings,” IEEE Transactions on advanced packaging, Vol. 24, No. 1, pp. 86-90, 2001.
Tsao, W.H., “In-fiber Bragg Grating Sensors for Structural Corrosion Evaluation,” Master Thesis of National Cheng Kung University, 1999.
Weidman, D.L., Beall, G.H., Chyung, K.C., Francis, G.L., and Modavis, R.A., “A Novel Negative Expansion Substrate Material for Athermalizing Fiber Bragg Gratings,” 22nd European Conference on Optical Communication, Vol. 1, pp. 61-64, 1996.
Yoffe, G.W., Krug, P.A., Ouellette, F., and Thorncraft, D.A., “Passive Temperature-Compensating Package for Optical Fiber Gratings,” Applied Optics, Vol. 34, No. 30, pp. 6859-6861, 1995.