簡易檢索 / 詳目顯示

研究生: 孔德明
Kung, Te-Ming
論文名稱: 銅電化學機械研磨形成機制在奈米半導體積體電路製程之研究
Investigation of Nano-scale Copper ECMP Mechanism on Damascene Process for Semiconductor Integrated Circuits
指導教授: 劉全璞
Liu, Chuan-Pu
共同指導教授: 王英郎
Wang, Ying-Lang
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 159
中文關鍵詞: 電化學機械研磨平坦化效能銅離子濃度電壓
外文關鍵詞: Electrochemical mechanical planarization, Planarization efficiency, Cu ion concentration, Potential
相關次數: 點閱:89下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探究銅電化學機械研磨(ECMP)形成機制在奈米半導體積體電路製程之研究。本研究皆採用無研磨粒子(abrasive particle)的電化學機械研磨製程,減低奈米級積體電路因為研磨粒子造成之刮傷而形成斷路。在此研究中,利用高解析穿透式電子顯微鏡(HRTEM) 與X射線光電子能譜分析儀(XPS)探討薄膜鈍化層微結構及表面成長機制,並利用電化學阻抗儀(EIS)與動態電壓(Potentiodynamic)極化曲線進行電化學性質之研究。另一方面探討經電化學機械研磨的銅平坦化效能(PE)之變化,及其在奈米半導體積體電路製程之研究。
    本論文依研究主題可區分為三大部分。第一部份,研究在電化學拋光(electropolishing)期間,磷酸(H3PO4)電解液中銅離子濃度對銅移除率(removal rate)的影響,而且銅移除率會隨電解液中銅離子濃度的增加而減少。發現在動態電壓極化曲線中,溶解電流密度(Id)隨電解液中銅離子濃度的增加而減少。在實際和理論銅移除率之間的差異明顯存在,可能是在銅表面上形成薄膜鈍化層時氧化還原反應的能源消耗。隨著電解液裡銅離子濃度增加,經電化學拋光的銅薄膜表面,其薄膜鈍化層的厚度也增加。利用HRTEM來探討薄膜鈍化層微結構並確認薄膜鈍化層的厚度增加是由於電解液中銅離子濃度的增加。從XPS分析此薄膜鈍化層有三個氧化物型態,為Cu2O、 Cu(OH)2及 CuO,而薄膜鈍化層的厚度增加明顯與CuO/Cu2O的強度比例增加有關。因此,電解液中銅離子濃度的增加所產生的CuO薄膜鈍化層的厚度增加,對銅溶解速率減緩。
    第二部份,研究在銅電化學機械拋光處理、電化學拋光處理及化學機械研磨處理(CMP)期間,電解液中銅離子濃度對銅移除率的影響。發現在銅電化學機械拋光處理的銅移除率影響最大,而且銅移除率會隨電解液中銅離子濃度的增加而減少。減少的銅移除率比率分別為45.8% (ECMP) 、9.55% (electropolishing)及 5.71% (CMP)。而先前第一部份已探討在電化學拋光期間,電解液中銅離子濃度對銅移除率的影響。在銅電化學機械拋光處理期間,於動態電壓極化曲線中,溶解電流密度(Id)隨電解液中銅離子濃度的增加而減少。EIS分析資料後提出一模擬等效電路圖,發現在銅溶解速率期間,表面含有擴散層使薄膜鈍化層的阻抗(Rp)明顯增加。從XPS分析知,此薄膜鈍化層的阻抗增加明顯與二價銅中CuO的強度比例增加有關。因此,電解液中銅離子濃度的增加所產生的CuO薄膜鈍化層的厚度增加,銅溶解速率減緩造成移除率下降。使用45 μm寬的銅特徵圖案,在含銅離子濃度的電解液中研磨後,銅薄膜平坦化效能評估值達25.7%,顯示銅離子濃度及電壓可控制薄膜鈍化層之成長及平坦化效能。
    最後一部分,研究在銅電化學機械拋光處理期間,電解液中電壓、研磨時的下壓力及旋轉速度對銅移除率的影響。發現電壓的影響最大,其次是下壓力及旋轉速度,而且銅移除率會隨電壓、下壓力及旋轉速度的增加而增加。EIS分析資料後提出一模擬等效電路圖,發現在銅溶解速率期間,表面含有擴散層使薄膜鈍化層的阻抗隨電壓增加而明顯增加,而隨下壓力及旋轉速度增加而下降。電荷轉移延遲時間(charge-transfer time-delay) 隨電壓、下壓力及旋轉速度的增加而減少,表示銅溶解速率變快。從XPS分析此薄膜鈍化層知,此薄膜鈍化層的阻抗增加明顯與Cu2O與二價銅的強度比例增加有關。在低電壓時,銅溶解速率低,Cu2O成長慢,而高電壓時,銅溶解速率較高,Cu2O成長較快,再加上機械力移除銅氧化物後,銅移除率又再隨電壓增加而增加。

    This dissertation explores nano-scale copper (Cu) electrochemical mechanical planarization (ECMP) mechanism on damascene process for semiconductor integrated circuits. ECMP process has no abrasive particle because the broken circuits are formed by scratches due to abrasive particles in nano-scale semiconductor integrated circuits. We have investigated the microstructures and growth mechanism of passive film on the Cu surface by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of the samples were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve. In addition, we have evaluated the planarization efficiency (PE) after ECMP processing in the in the semiconductor integrated circuits.
    The main focus of this dissertation can be divided into three parts. First, the dependence of Cu removal rate during Cu electropolishing on Cu ion concentration in 85wt% H3PO4 is investigated. With increasing Cu ion concentration in the electrolyte, results show that the Cu removal rate significantly decreases, because more Cu ions in the electrolyte facilitate the formation of a surface passive film. The dissolution current density (Id) increases with increasing Cu ion concentrations in the potentiodynamic curves of the Cu films during electropolishing. The discrepancy between the removal rate in reality and in theory may be due to the additional energy consumption of forming passive films on the Cu surface. It is found that thickness of the passive film on the Cu surface after Cu electropolishing in electrolytes with increasing Cu ion concentration. Microstructures and crystallography of the passive film are examined by HRTEM, which confirms the increase of the passive film thickness due to the high Cu ion concentration in a H3PO4 electrolyte. Three types of Cu oxide are detected using XPS, namely Cu2O, Cu(OH)2, and CuO. The increase of passive film thickness is related to the intensity ratio of CuO/Cu2O obviously. Therefore, the increase of CuO passive film thickness due to the increase of Cu ion concentration in a H3PO4 electrolyte reduces Cu dissolution rate.
    Then, the dependence of Cu removal rate on Cu ion concentration during ECMP, electropolishing, and chemical mechanical polishing (CMP) in an 85wt% H3PO4 electrolyte is investigated. ECMP rate is the highest in all polishing, and the percentage of the ratio of the decrease of the Cu removal rate to maximum of the Cu removal rate for ECMP, electropolishing, and CMP are 45.8%, 9.55% and 5.71%. The dependence of Cu removal rate on Cu ion concentration during electropolishing has been discussed in previous section. Id decreased when the Cu ion concentration is increased in current-voltage curves during ECMP in electrolytes with various Cu ion concentrations. Simulation results from the proposed equivalent circuit diagram that are matched with the impedance data and the resistance of the passive layer (Rp) increases obviously. From XPS analysis, the increase of passive film thickness is related to the intensity ratio of CuO/Cu(II) obviously. Therefore, the increase of CuO passive film thickness reduces Cu dissolution rate and removal rate. PE values of the Cu films with feature size of 45 μm in the 85 wt% H3PO4 electrolyte with Cu ion concentrations reach 25.7%, because Cu ion concentrations and potentials can control the growth of the passive film and PE.
    Finally, the dependence of Cu removal rate on potential, down-force and rotation speed during ECMP in an 85wt% H3PO4 electrolyte is investigated. The factor of the potential is the more influence than down-force and rotation speed. With increasing potential, down-force and rotation speed, results show that the Cu removal rate increases. Simulation results from the proposed equivalent circuit diagram that are matched with the impedance data and Rp increases obviously with increasing potential, Rp decreases with increasing down-force and rotation speed. The charge-transfer time-delay decrease with increasing potential, down-force and rotation speed, indicating that the Cu dissolution rate becomes quick. From XPS analysis, the increase of passive film thickness is related to the intensity ratio of Cu2O /Cu(II) obviously. Cu2O grows slowly and Cu dissolves low at low potential; Cu2O grows quickly and Cu dissolves fast at high potential. Cu2O passive film is removed by mechanic force, and then Cu removal rate increases with increasing potentials.

    中文摘要I Abstract IV 致謝VIII 總目錄X 表目錄XIV 圖目錄XVI 第一章 緒論1 1-1前言1 1-2 研究目的6 1-3 論文架構7 第二章文獻回顧8 2-1積體電路發展簡史 8 2-2積體電路之多層金屬連線需求15 2-3雙鑲嵌結構製作技術簡介20 2-3.1鑲嵌結構種類20 2-3.2雙鑲嵌結構製作類型23 2-4 平坦化製程介紹26 2-4.1在積體電路製程上之必要性26 2-4.2平坦化製程之研磨機制29 2-4.3 新平坦化製程之開發31 2-5 電化學技術在平坦化製程的應用36 2-5.1電化學基本理論36 2-5.2 電極動力學43 2-5.3 Tafel 方程式47 2-5.4 電化學阻抗頻譜分析52 第三章實驗方法與步驟62 3-1 實驗流程62 3-1.1 銅薄膜材料性質分析之實驗流程圖62 3-2 拋光試片製備63 3-3研磨拋光實驗63 3-3.1銅離子濃度在電解液中對銅電化學拋光之影響63 3-3.2銅離子濃度在電解液中對銅電化學機械拋光處理之影響64 3-3.3電壓及機械研磨對銅電化學機械拋光處理之影響65 3-3.4電解液及研磨液製備66 3-4 實驗儀器 68 3-5 分析儀器68 3-5.1 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 68 3-5.2 能量分散光譜儀(Energy-dispersive Spectrometer, EDS) 70 3-5.3 穿透式電子顯微鏡(High resolution transmission electron microscopy, HRTEM) 70 3-5.4 X射線光電子能譜分析儀(X-ray photoelectron spectroscopy, XPS) 71 3-6電化學量測71 3-6.1動態位能極化曲線 (Potentiodynamic polarization curve)72 3-6.2 循環伏安法(cyclic voltammetry, CV) 72 3-6.3電化學阻抗儀(electrochemical impedance spectroscopy, EIS) 72 第四章結果與討論74 4-1 銅離子濃度在電解液中對銅電化學拋光之影響74 4-1.1 銅移除率與動態位能極化曲線分析74 4-1.2 電化學阻抗儀分析81 4-1.3 電極循環伏安法分析89 4-1.4 高解析度穿透式電子顯微鏡分析93 4-1.5 X射線光電子能譜分析儀分析96 4-2 銅離子濃度在電解液中對銅電化學機械拋光處理之影響102 4-2.1 銅移除率與動態位能極化曲線分析102 4-2.2 電化學阻抗儀分析106 4-2.3 X射線光電子能譜分析儀分析111 4-2.4 銅平坦化效能評估120 4-3 電壓及機械研磨對銅電化學機械拋光處理之影響124 4-3.1銅移除率與動態位能極化曲線分析124 4-3.2電化學阻抗儀分析131 4-3.3 X射線光電子能譜分析儀分析140 第五章 結論144 第六章 未來工作146 參考文獻147 著作156

    [1] S. M. Sze, Physics of Semiconductor Devices, 2d ed., John Wiley & Sons, Inc., New York, 1981.
    [2] International Technology Roadmap for Semiconductors, 2005.
    [3] Gordon Moore, Electronics Magazine, 114 (1965).
    [4] Hong Xiao著, 羅正中, 張鼎張譯, “半導體製造技術導論", 學銘圖書, 台灣, 2004.
    [5] M. T. Bohr, IEDM, p.241(1995).
    [6] S. P. Murarka, Metallization: Theory and Practice for VLSI and ULSI, Butterworth- Heinemann, Boston, 1993.
    [7] K. H. Uoway, J. J. App. Phys.,71, 5433, (1992).
    [8] Roy Iggulden et a1., Solid State Technology, November 1998. p37.
    [9] R. J. Contolini, L. Tarte, R. T. Graff and L. B. Evans, VMIC Conference, 1995, p.27
    [10] 邱顯光、蔡明蒔、林鴻志,奈米通訊,第六卷,第三期 (1999).
    [11] Peter Singr, Semiconductor International, June 1998, p91.
    [12] Peter Singer, Semiconductor International, August 1997, p79.
    [13] T. Licata et al., VMIC, 1995, p596.
    [14] R. F. Schnabel et al., Microelectric. Engineering 37/38, 1997, p59.
    [15] Roy Iggulden et al., Solid State Technology, November 1998, p37.
    [16] J.A. Lee, M. Moinpour, H.-C. Liou, T. Abell, in: Proceedings of Materials Research Society, San Francisco, CA, 2003,p. F7.4.
    [17] International Technology Roadmap for Semiconductors, 2001.
    [18] R. Saxena, “Feature Scale Modeling AND Experiments for Chamical-Mechanical Planarization, ” Rensselaer Polytechnic Institute Troy, (2002).
    [19] Stephen A. Campbell, “ The Science and Engineering of Microelectronic Fabrication, ” Inc., 167 (1996).
    [20] L. M. Cook, J. of Non-Crystal. Solids, 120, 152 (1990).
    [21] W. T. Tseng, Y. L. Wang, J. Electrochem. Soc., 144, L15 (1997).
    [22] T. M. Kung, C. P. Liu, S. C. Chang, K. W. Chen, and Y. L. Wang, J. Electrochem. Soc., 156, H535 (2009).
    [23] J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, D. J. Duquette, Materials Chemistry and Physics, 41, 217 (1995).
    [24] J. M. Steigerwald, S. P. Murarka, J. Ho, R. J. Gutmann, D. J. Duquette, J. Vac.Sci, Technol. B, 13, 2215 (1995).
    [25] S. V. Babu, Y. Li, A. Jindal, JOM, PP.50-52( 2001).
    [26] J. Lu, J. E. Garland, C. M. Petite, S. V. Babu, D. Roy, Mat. Res. Soc. Symp. Proc., 767, 257 (2003).
    [27] R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D.J.Duquette, S. P. Murarka, Thin Solid Films, 270, 596 (1995).
    [28] M. Hariharaputhiran, J. Zhang, S. Ramarajan, J. J. Keleher, Y. Li, S. V.Babu, J. Electrochem. Soc., 147, 3820 (2000).
    [29] S. Aksu, F. M. Doyle, J. Electrochem. Soc., 148, B51 (2001).
    [30] S. Aksu, F. M. Doyle, J. Electrochem. Soc., 149, G352 (2002).
    [31] Y. Li, S. Ramarajan, M. Hariharaputhiran, Y. S. Her, S. V. Babu, Mat. Res. Soc.Symp. Proc., 613, E2.4.1(2000).
    [32] A. Jindal, S. Hegde, S. V. Babu, Electrochem. Solid-State Lett., 5, G48 (2002).
    [33] S. Kondo, N. Sakuma, Y. Homma, N. Ohashi, PV98-6, 195, The Electrochemical Society Proceedings Series, Pennington, NJ (1998).
    [34] J. -G. Park, S. -H. Lee, H. -G. Kim, H. -D. Jeong, D. -K. Moon, Mat. Res. Soc. Symp. Proc., 566, 173 (2000).
    [35] Z. Lu, S. V. Babu, E. Matijevic, Mat. Res. Soc. Symp. Proc., 767, 167 (2003).
    [36] W. G. America, R. Srinivasan, S. V. Babu, Mat. Res. Soc. Symp. Proc., 566,13 (2000).
    [37] J. W. Lee, B. U. Yoon, S. Hah, J. T. Moon, Mat. Res. Soc. Symp. Proc. , 671, M5.3.1 (2001).
    [38] K. S. Choi, R. Vacassy, N. Bassim, R. K. Singh, Mat. Res. Soc. Symp. Proc., 671, M5.8.1 (2001).
    [39] N. Chandrasekaran, T. Taylor, G. Sabde, Mat. Res. Soc. Symp. Proc., 767, 153(2003).
    [40] S. Tamilmani, J. Shan, W. Huang, S. Raghavan, R. Small, C. Shang, B. Scott, Mat. Res. Soc. Symp. Proc., 767, 161 (2003).
    [41] X. Feng, Y.-S. Her, W. L. Zhang, J. Davis, E. Oswald, J. Lu, V. Bryg, S. Freeman,D. Gnizak, Mat. Res. Soc. Symp. Proc., 767, 173 (2003).
    [42] S. C. Chang, J. M. Shieh, C.C. Hung, B. T. Dai and M. S. Feng, Jpn. J. Appl. Phys., 41, 7332 (2002).
    [43] S. C. Chang, J. M. Shieh, B. T. Dai, M. S. Feng, Y. H. Li, C. H. Shih, M. H. Tsai, S. L. Shue, R. S. Liang and Y. L. Wang, Electrochem. Solid-State Lett., 6, G72 (2003).
    [44] S. Shivareddy, S. EunBae, and S. R. Brankovic, Electrochem. Solid-State Lett., 11, D13 (2008).
    [45] J. M. Shieh, S. C. Chang, Y. L. Wang, B. T. Dai, S. S. Cheng and J. Ting, J. Electrochem. Soc., 151, C459 (2004).
    [46] F. H. Giles and J. H. Bartlett, J. Electrochem. Soc., 108, 266 (1961).
    [47] S. H. Glarum and J. H. Marshall, J. Electrochem. Soc., 132, 2872 (1985).
    [48] K. Kojima and C. W. Tobias, J. Electrochem. Soc., 120, 1202 (1973).
    [49] R. Vidal and A. C. West, J. Electrochem. Soc., 142, 2682 (1995).
    [50] R. Vidal and A. C. West, J. Electrochem. Soc., 142, 2689 (1995).
    [51] D. Padhi, J. Yahalom, S. Gandikota and G. Dixit, J. Electrochem. Soc., 150, G10 (2003).
    [52] J. Edwards, J. Electrochem. Soc., 100, 189C (1953).
    [53] B. Du and I. I. Suni, J. Electrochem. Soc., 151, C375 (2004).
    [54] W. C. Elmore, J. Appl. Phys., 10, 724 (1939).
    [55] T. P. Hoar and T. W. Farthing, Nature (London), 169, 324 (1952).
    [56] L. Economikos, X. Wang, A. Sakamoto, P. Ong, M. Naujok, R. Knarr, L. Chen, Y. Moon, S. Neo, J. Salfelder, A. Duboust, A. Manens, W. Lu, S. Shrauti, F. Liu, S. Tsai, and W. Swart, IEEE Int. Interconnect Technol. Conference Proceedings, p. 233 (2004).
    [57] F. Q Liu, T. Du, A. Duboust, S. Tsai and W. Y. Hsu, J. Electrochem. Soc., 153, C377 (2006).
    [58] Y. J. Oh, G. S. Park, and C. H. Chung, J. Electrochem. Soc., 153, G617 (2006).
    [59] B. Du and I.I. Suni, IEEE Trans. Semicond. Manuf. 18, 341 (2005).
    [60] A. S. Brown, IEEE Spectrum, 42, 40 (2005).
    [61] Y. Hong, D. Roy, S. V. Babu, Electrochem. Solid-State Lett., 8, G297 (2005).
    [62]田福助, “電化學:理論與應用”, 新科技書局 (2004).
    [63] A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamental and Applications”, John Wiley & Sons, Singapore (1980).
    [64] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy Theory: Experiment, and Applications, 2nd ed., Wiley, New York (2005)
    [65] R. E. Lee, “Scanning Electron Microscopy and X-ray Microanalysis”, P T R Prentice-Hall, New York (1993).
    [66] D. B. Williams and C. B. Carter, “Transmisison Electron Microscopy”, Plenum, New York (1996).
    [67] John C. Vickerman. “Surface analysis :the principle techniques” John Wiley & Sons, New York (2009).
    [68] J. Mendez, R. Akolkar, T. Andryushchenko, and U. Landau, J. Electrochem. Soc., 155, D27 (2008).
    [69] T. N. Andyushchenko, A. E. Miller, and P. B. Fischer, Electrochem. Solid-State Lett., 9, C181 (2006).
    [70] K. Kojima and C. W. Tobias, J. Electrochem. Soc., 120, 1026 (1973).
    [71] D. Halliday and R. Resnick, Physics, 3rd ed., Wiley, New York (1979).
    [72] J. L. Fang and N. J. Wu, J. Electrochem. Soc., 136, 3800 (1989).
    [73] A.V. Benedetti, P.T.A. Sumodjo, K. Nobe, P.L. Cabot, W.G. Proud, Electrochim. Acta, 40, 2657 (1995).
    [74] E. S. M. Sherif, R. M. Erasmus, J. D. Comins, J. Colloid Interface Sci., 311, 144 (2007).
    [75] C. M. Whelan, M. Kinsella, H. M. Ho, K. Maex, J. Electrochem. Soc., 151, B33 (2004).
    [76] P. E. Laibinis, G. M. Whitesides, J. Am. Chem. Soc., 114, 9022 (1992).
    [77] K. P. Muthe, J. C. Vyas, S. N. Narang, D. K. Aswal, S. K. Gupta, D. Bhattacharya, R. Pinto, G. P. Kothiyal, S. C. Sabharwal, Thin Solid Films, 324, 37 (1998).
    [78] N. Cabrera and N. F. Mott, Rep. Prog. Phys., 12, 163 (1948).
    [79] T. Du, Y. Luo, V. Desai, Microelectron. Eng., 71, 90 (2004).
    [80] D. G. Mukhambetov and O. V. Chalaya, J. Vac. Sci. Technol. A, 20, 839 (2002).
    [81] B. Krishnamurthy, R. E. White, H. J. Ploehn, Electrochim. Acta, 47, 2505 (2002).
    [82] J. Hernandez, P. Wrschka, and G. S. Oehrlein, J. Electrochem. Soc., 148, G389 (2001).
    [83] C. C. Hung, Y. S. Wang, W. H. Lee, S. C. Chang, and Y. L. Wang, Electrochem. Solid-State Lett., 10, H127 (2007).
    [84] C. C. Hung, W. H. Lee, Y. S. Wang, S. C. Chang, and Y. L. Wang, Electrochem. Solid-State Lett., 10, D100 (2007).
    [85] I. Platzman, R. Brener, H. Haick, R. Tannenbaum, J. Phys. Chem. C, 112, 1101 (2008).
    [86] C. D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in: G.E. Muilenberg (Ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Praire, MN (1979).
    [87] Z. Huang, F. Cui, H. Kang, J. Chen, X. Zhang, and C. Xia, Chem. Mater., 20, 5090 (2008).
    [88] J. Kunze, V. Maurice, L.H. Klein, H.H. Strehblow, P. Marcus, Corros. Sci. 46, 245 (2004).
    [89] J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, New York (1997).
    [90] J. B. Lin, S. C. Lin, and H. Hocheng, J. Electrochem. Soc., 152, G664 (2005).
    [91] R. Saxena, D. G. Thakurta, R. J. Gutmann, and W. N. Gill, Thin Solid Films 449, 192 (2004).
    [92] S. H. Chang, Microelectronic Engineering 77, 76 (2005).
    [93] Y. Guo, A. Chandra, and A. F. Bastawros, J. Electrochem. Soc., 151, G583 (2004).
    [94] V. H. Nguyen, R. Daamen, H. V. Kranenburg, P. V. D. Velden, and P. H. Woerlee, J. Electrochem. Soc., 150, G689 (2003).
    [95] T. Du, J. Chen, D. Cao, J. Mater. Sci., 36, 3903 (2001).
    [96] J. M. Bastidas, J. L. Polo, E. Cano, C. L. Torres, J. Mater. Sci., 35, 2637 (2000).
    [97] S. Chaudhari, S.R. Sainkar, P.P. Patil, J. Phys. D: Appl. Phys., 40, 520 (2007).
    [98] L. Larabi , O. Benali , S. M. Mekelleche , and Y. Harek, Appl. Surf. Sci., 253, 1371 (2006).
    [99] M. E. Orazem, P. Shukla, and M. A. Membrino, Electrochim. Acta, 47, 2027 (2002)
    [100] H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Corros. Sci., 45, 867 (2003).
    [101] F. B. Growcock, R. J. Jasinski, J. Electrochem. Soc., 136, 2310 (1989).

    下載圖示 校內:2015-07-30公開
    校外:2015-07-30公開
    QR CODE