簡易檢索 / 詳目顯示

研究生: 葉丹筑
Yeh, Dan-ju
論文名稱: 利用三層發光層製成的白光有機電激發光二極體
White Organic Light-Emitting Diodes Based on Three Emissive Layers
指導教授: 蘇炎坤
Su, Yan-kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 70
中文關鍵詞: 白光有機電激發光二極體
外文關鍵詞: OLEDs, WOLEDs
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,有機電激發光二極體利用高真空熱蒸著機成長,使用ITO玻璃基板。多層結構的白光元件的結構為ITO/ NPB/ MADN/ BAlq/ Alq3: C545T/ Alq3: DCJTB/ BAlq/ Alq3/ CsF/ Al。以ITO當作陽極,NPB為電洞傳輸層,MADN作為藍光發光層,BAlq作為電洞阻擋層,C545T當做綠光的染料摻雜在Alq3中,DCJTB當做紅光的染料摻雜在Alq3中,另外Alq3作為電子傳輸層,CsF為緩衝層,Al為陰極,完成整個元件的製作。
     本研究的目的在於找出最理想的C545T和DCJTB摻雜在Alq3中的濃度,以及三層發光層的最佳厚度。因為C545T和DCJTB摻雜在Alq3中的濃度會影響能量轉換的效率,三層發光層的厚度則會影響載子再結合的位置。由研究結為,最理想的白光元件結構如下ITO/ NPB (350Å)/ MADN (300 Å)/ BAlq (100 Å)/ Alq3: 3% C545T (150 Å)/ Alq3: 1% DCJTB (100 Å)/ BAlq (50 Å)/ Alq3 (100 Å)/ CsF (12 Å)/ Al (1500 Å)。最佳的白光CIE座標為(0.33,0.34),最大亮度為15伏時所量測到的7440 cd/m2,最佳的效率為4.71 cd/A,是在14伏時所得到的。

    In this thesis, organic light-emitting devices were deposited on ITO substrate by high vacuum evaporator system. The device configurations of white OLEDs (WOLEDs) using multilayer structure were ITO/ NPB/ MADN/ BAlq/ Alq3: C545T/ Alq3: DCJTB/ BAlq/ Alq3/ CsF/ Al. Here, ITO was used as anode, NPB, MADN and BAlq, were used as hole-transporting layer, blue emitting layer, and hole-blocking layer, C545T was the green dye and doped in Alq3, DCJTB was red dye and doped in Alq3, Alq3 was used as host material and electron-transporting layer, CsF was used as buffer layer, and Al was used as cathode.
    The purpose in this study is trying to find the optimum concentrations of C545T and DCJTB doped in Alq3 and the optimum thicknesses of three emitting layers. Because the concentrations of C545T and DCJTB doped in Alq3would affect the efficiency of energy transfer and thickness of three emitting layers would affect the location of carries recombination. The optimum WOLED structure we obtained was ITO/ NPB (350Å)/ MADN (300 Å)/ BAlq (100 Å)/ Alq3: 3% C545T (150 Å)/ Alq3: 1% DCJTB (100 Å)/ BAlq (50 Å)/ Alq3 (100 Å)/ CsF (12 Å)/ Al (1500 Å). The best white light CIE coordinate was on (0.33, 0.34), and the maximum luminance was 7440 cd/m2 at 15V, and the maximum current efficiency was 4.71 cd/A at 14V.

    Abstract (in Chinese) I Abstract (in English) II Acknowledgement III Content IV Table Captions VII Figure Captions VIII Chapter 1 Introduction 1 1-1 Development history of organic electroluminescent devices 1 1-2 The advantages of organic light-emitting diodes 1 1-3 The applications of white organic light-emitting diode 2 Chapter 2 Principle of organic light emitting diodes 4 2-1 The structure of organic light-emitting diode 4 2-2 The operation theory of OLEDs 10 2-2-1 HOMO and LUMO 10 2-2-2 Fluorescence and Phosphorescence 10 2-2-3 Energy transfer mechanism 11 2-2-4 Exciplex and excimer charge transfers 11 2-3 Device efficiency 12 2-3-1 Quantum efficiency 12 2-3-2 Luminous (power) efficiency 13 Chapter 3 Experimental procedures and systems 16 3.1 Experimental materials 16 3.2 The treatment of substrate 17 3-3 Deposition system 18 3-4 Deposition of thin films 18 3-4-1 Deposition of organic thin fims 18 3-4-2 Deposition cathode 19 3-5 Measurement system 20 3-5-1 Current-voltage measurement 20 3-5-2 Luminance measurement 20 3-5-3 Electroluminescence spectroscopy 20 3-5-4 CIE measurement 21 Chapter 4 Results and Discussion 24 4-1 ITO/NPB(350Å)/Alq3:X%DCJTB(600Å)/CsF(12Å)/Al(1500Å) 24 4-2 ITO/NPB(350Å)/MADN(XÅ)/Alq3:1%DCJTB(600Å)/CsF(12Å)/Al(1500Å) 25 4-3 ITO/NPB(350Å)/MADN(200Å)/BAlq(150Å)/Alq3:1%DCJTB(60Å)/Alq3(100Å)/CsF (12 Å)/Al(1500Å) 27 4-4 ITO/NPB(350Å)/MADN(XÅ)/BAlq(150Å)/Alq3:1%DCJTB(60Å)/Alq3:2%C545T (200Å)/BAlq(50Å)/Alq3(100Å)/CsF(12Å)/Al(1500Å) 29 4-5 ITO/NPB(350Å)/MADN(300Å)/BAlq(150Å)/Alq3:X%C545T(200Å)/Alq3:1%DCJTB (60Å)/BAlq(50Å)/Alq3(100Å)/CsF(12Å)/Al(1500Å) 30 4-6 ITO/NPB(350Å)/MADN(300Å)/BAlq(150Å) Alq3:X%C545T(200Å)/ Alq3:1%DCJTB (80Å)/BAlq(50Å)/ Alq3(100Å)/CsF(12Å)/Al(1500Å) 32 4-7 ITO/NPB(350Å)/MADN(300Å)/BAlq(150Å)/ Alq3:X%C545T(200Å)/Alq3:1%DCJTB (100Å)/BAlq(50Å)/Alq3(100Å)/CsF(12Å)/Al(1500Å) 33 4-8 ITO/NPB(350Å)/MADN(300Å)/BAlq(150Å)/Alq3:3%C545T(150Å)/ Alq3:1%DCJTB (100Å)/BAlq(50Å)/ Alq3(100Å)/CsF(12Å)/Al(1500Å) 35 Chapter 5 Conclusion and Future work 65 References 66

    [1] M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    [2] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913, (1987).
    [3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackly, R. H.
    Friend, P. L. Burn, and A. B. Homes, Nature, 347, 539 (1990).
    [4] A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A.
    Silvernail, K. Rajan, M. Hack, J. J. Brown, Xi Chu, L. Moro, T. Krajewski, and
    N. Rutherford, Appl. Phys. Lett., 83, 413, (2003).
    [5] J. Kido, W. Ikeda, M. Kimura, and K. Nagai, J. J. Appl. Phys., 35, L394 (1996).
    [6] P. Destruel, P. Jolinat, R. Clergereaux, and J. Farenc, J. J. Appl. Phys., 85,
    397 (1999).
    [7] F. Li, H. Tang, J. Shinar, O. Resto and S. Z. Weisz, Appl. Phys. Lett., 70,
    2741(1997).
    [8] J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, Synth. Met., 114, 251 (2000).
    [9] A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, and R. Salaneck, Adv. Mater., 10, 857 (1998).
    [10] H. Kim, J. S. Horwitz, G. P. Kushto, S. B. Qadri, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett., 78, 1050 (2001).
    [11] A. Yamamori, S. Hayashi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett., 78, 3343 (2001).
    [12] T. Ishida, H. Kobayashi, and Y. Nakato, J. Appl. Phys., 73, 4344 (1993).
    [13] M. Bender, J. Trube, and J. Stollenwerk, Appl. Phys. A, 69, 397 (1999).
    [14] T. Futagami, Y. Shigesato, and I. Yasui, J. J. Appl. Phys., 37, 6210 (1998).
    [15] T. Maruyama , K. Fukui, Thin Solid Films, 203, 297 (1991).
    [16] F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, Appl. Phys. Lett., 70, 2741 (1997).
    [17] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett., 70, 1348 (1997).
    [18] I. M. Chan, W. C. Cheng, and F. C. Hong, Appl. Phys. Lett., 80, 13 (2002).
    [19] S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, Appl. Phys. A:Mater. Sci. Process., 68, 447 (1999).
    [20] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A-M. Hor and H. Aziz, Appl. Phys. Lett.,78, 2595 (2001).
    [21] S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).
    [22] Y. Shirota, Y. Kuwabara, H. I. T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Appl. Phys. Lett., 65, 807 (1994).
    [23] Y. Hamada, N. Matsusue, H. Kanno, H. Fujii, T. Tsujioka and H. Takahashi, J. J. Appl. Phys. Lett., 40, L753 (2001).
    [24] D. Heithecker, A.Kammoun, T. Dobbertin, T. Riedl, E.Becker, D. Metzdorf, D. Schneider, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett., 82, 4178 (2003).
    [25] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, Synth. Met., 111, 139 (2000).
    [26] C. Giebeler, H. Antoniadis, Donal D. C. Bradley, Y. Shirota, J. Appl. Phys., 85, 608 (1999).
    [27] C. W. Tang, S. A. VanSlyke, and C. H. Chen, Appl. Phys. Lett., 65, 3610 (1989).
    [28] U. Mitschke and P. Bäuerle, J. Mater. Chem., 10, 1471 (2000).
    [29] Y. Kijima, N. Asai and S. I. Tamura, J. J. Appl. Phys., 38, 5274 (1999).
    [30] R. S. Deshpande, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett.,75, 888 (1999).
    [31] Y. Gao, L. Wang, D. Zhang, L. Duan, G. Dong, and Y. Qiu, Appl. Phys. Lett., 82, 155 (2003).
    [32] Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett., 74, 2227 (2003).
    [33] C. Qiu, Z. Xie, H. Chen, M.Wong, and H. S. Kwok, J. Appl. Phys.,93, 3253 (2003).
    [34] Ch. Jonda, A. B. R. Mayer, and W. Grothe, J. Appl. Phys., 85, 6884 (1999).
    [35] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes, and F. Cacialli, Appl. Phys. Lett., 79, 174 (2001).
    [36] L. S. Hung, C. W. Tang, and M. G.. Mason, Appl. Phys. Lett., 70, 152 (1997).
    [37] J. M. Bharathan and Y. Yang, J. Appl. Phys., 84, 3207 (1998).
    [38] M. Stössel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, Appl. Phys. A: Mater. Sci. Process. 68, 387 (1999).
    [39] S. C. Kim, S. N. Kwon, M. W. Choi, C. N. Whang, K. Jeong, S. H. Lee, J. G. Lee and S. Kim, Appl. Phys. Lett., 79, 3276 (2001).
    [40] M. Matsumura, A. Ito, and Y. Miyamae, Appl. Phys. Lett., 75, 1042 (1999).
    [41] L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997).
    [42] M. Matsumura and Y. Jinde, Appl. Phys. Lett., 73, 2872 (1998).
    [43] X. Yang, Y. Mo, W. Yang, G.. Yu, and Y. Cao, Appl. Phys. Lett., 79, 563 (2001).
    [44] D. Braun and A. J. Heeger, J. Appl. Phys., 58, 1982 (1991).
    [45] A. Madrazo and M. N. Vesperinas, Appl. Phys. Lett., 70, 31 (1997).
    [46] A. Misra, P. Kumar, M. N. Kamalasanan and S. Chandra, Semicond. Sci. Technol. 21, R35–R47 (2006).
    [47] J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281 (1995).
    [48] L. Wang, G.. Lei, and Y. Qiu, J. Appl. Phys., 97, 114503 (2005).
    [49] M. Mazzeo, D. Pisignano, L. Favaretto, G.. Sotgiu, G.. Barbarella, R. Cingolani ,and G. Gigli, Synth. Met., 139, 675 (2003).
    [50] S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, Appl. Phys. Lett., 71, 2883 (1997).
    [51] H. A. Al. Attar, A. P. Monkman, M. Tavasli, S. Bettington, and M. R. Bryce, Appl. Phys. Lett., 86, 121101 (2005).
    [52] C. I. Chao and S. A. Chen, Appl. Phys. Lett., 73, 426 (1998).
    [53] B.W. D Andrade, J. Brooks, V. Adamovich, M.E. Thompson, and S.R. Forrest, Adv. Mater., 14, 1032 (2002).
    [54] J. Thompson, R. I. R. Blyth, M. Mazzeo, M. Anni, G. Gigli, and R. Cingolani, Appl. Phys. Lett., 79, 560 (2001).
    [55] M. Cocchi, D. Virgili, G. Giro, V. Fattori, P. Di Marco, J. Kalinowski, and Y. Shirota, Appl. Phys. Lett., 80, 2401 (2002).
    [56] Y. Divayana, X. W. Sun, B. J. Chen, G. Q. Lo, C. Y. Jiang, and K. R. Sarma, Appl. Phys. Lett., 89, 173511 (2006).
    [57] Y. S. Wu, S. W. Hwang, H. H. Chen, M. T. Lee, W. J. Shen, and C. H. Chen, Thin Solid Films, 488, 265 (2005).
    [58] Y. Wu, W. Zhu, X. Zheng, R. Sun, X. Jiang, Z. Zhang, and S. Xu, Journal of Luminescence, 122, 629 (2007).
    [59] S. Kwon, S. C. Kim, Y. Kim, J. G. Lee, S. Kim, and K. Jeong, Appl. Phys. Lett., 79, 4595 (2001).
    [60] H. Yang, Y. Zhao, W. Xie, Y. Shi, W. Hu, Y. Meng, J. Hou and S. Liu, Semicond. Sci. Technol., 21, 1447 (2006).
    [61] Y. M. Wang, F. Teng, Z. Xu, Y. B. Hou, S. Y. Yang, and X. R. Xu, Mater. Chem. and Phys., 92, 291 (2005).
    [62] H. H. Sung, I. H. Kim, K. N. Byun and H. S. Yoo, Curr. Appl. Phys., 5, 345 (2005).
    [63] P. Dalasiński, Z. Lukasiak, M. Wojdyla, M. R. barz and W. Bala, Optic. Mater., 28, 98 (2006).
    [64] X. Y. Zheng, W. Q. Zhu, Y. Z. Wu, X. Y. Jiang, R. G. Sun, Z. L. Zhang and S. H. Xu, Displays, 24, 121 (2003).
    [65] M. H. Ho, Y. S. Wu, S. W. Wen, M. T. Lee, T. M. Chen, C. H. Chen, K. C. Kwok, S. K. So, K. T. Yeung, Y. K. Cheng, and Z. Q. Gao, Appl. Phys. Lett., 89, 252903 (2006).
    [66] M. T. Lee, C. H. Liao, C. H. Tsai, and C. H. Chen, Adva. Mater., 17, 2493
    (2005).

    下載圖示 校內:2010-06-28公開
    校外:2010-06-28公開
    QR CODE