簡易檢索 / 詳目顯示

研究生: 沈政宏
SHEN, CHEN-HUNG
論文名稱: 集合住宅大樓自來水揚水泵節能效益之研究
Comprehensive energy conservation of water pump for apartment buildings
指導教授: 江哲銘
CHIANG, CHE-MING
賴榮平
Lai, Rong-Ping
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系碩士在職專班
Department of Architecture (on the job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 129
中文關鍵詞: 集合住宅大樓揚程揚水量節能效益自來水揚水泵
外文關鍵詞: pumping head, complex building, energy saving, water lifting pump, pumping quantity
相關次數: 點閱:158下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築物機電設計是本人長期以來所從事的工作,回顧以往設計與送審經驗得知,多數的建設公司偏向採用便宜的台製自來水揚水泵。但在設計時台製品可選擇的型號較少,設計型錄也缺少效率、吸入揚程等特性說明;興建送審時自來水公司也未對於自來水揚水泵性能做審查。因此自來水揚水泵選用是否適當,長期為人所忽略。而蔣順田(2005)首先以理論推導方式計算自來水揚水泵更新後節約用電量,但仍缺乏實際案例之驗證。因此本研究以集合住宅為研究對象,檢討自來水揚水泵使用現況,並探討集合住宅大樓自來水揚水泵改善可行性與節能效益。
    由以往文獻歸納得知,集合住宅大樓設計自來水揚水泵時,揚水量應等於或略大於標準揚水量,揚程為地下室水箱至屋頂水塔之「垂直高度」加上「管路摩擦損失」,以管內流速小於160cm/s為基準計算揚水管管徑。以此為標準,本研究進行集合住宅大樓設計圖審查、現場量測與案例實際節能效益檢討。
    首先針對自來水揚水泵設計水量與揚程做檢討。透過分析100棟集合住宅大樓自來水揚水泵系統設計圖面,本研究得知常用的自來水揚水泵型式可分為陸上直立式、陸上臥式與沉水式,其中以陸上直立式採用比例最高(51%)。超過一半以上案例的揚水量顯然過大,而案例中揚程設計適宜者僅佔32%,設計揚程高於實際揚程導致揚水量加大、軸馬力增加,以致有過載現象。
    從上述案例中選取7個案例進行現場調查,結果顯示台製自來水揚水泵僅少數可達到揚水泵名牌的額定值,其原因可能是性能劣化、缺乏細部設計資料導致設計時無法正確選擇揚水泵等。本研究同時透過調查2個已完成改善的案例,分析改善可行性與節能效益。將更新前後資料比較後顯示,更新自來水揚水泵可以同時降低最高需量與用電度數。最高需量平均可降低34.79%、用電度數平均可降低7.46%,加總後總電費平均可節省19.16%。而僅以揚水泵本體換裝價格來計算回收年限,分別是3年4月與5年。若加計不銹鋼附屬管材與閥件的更換成本,則會延長至5年1個月與13 年7個月。實證結果確認改善具有經濟效益。

    The electrical and mechanical system design for buildings is my major job and has been working for a very long time. Reviewing my former experience of design and examining the specification documents, many construction companies would like to choose cheaper water lifting pumps, which are made in Taiwan. However, for designers and ending users, those made-in-Taiwan pumps do not have enough types and descriptions for efficiencies and suction heads. Besides, the water supply company does not examine the performance of lifting pumps. Thus, if the water pumps are adequate to the water system has been neglected for long term. Sun-Tain Chaiung first theoretically deducted the electrical energy savings after renewal the lifting pumps in year 2005. However there is still no practical experience to verify the conclusion. Thus, the thesis is focused on the complex buildings, to discuss the practical use of water lifting pumps, the feasibility of improving lifting pumps, and the benefit of energy savings.
    Concluding the former related literatures, in designing the water lifting pumps of the complex buildings, the pumping quantity of water must be equal to or comparatively larger than the standard quantity, and the lift head should be counted as the vertical height from the water tank of the basement to the water tank of the roof, and plus the head loss of pipe friction, which is calculated based on the flow rate less than 160cm/s to derive the pipe size. Based on the above standard, the research has done the examination of design charts of several complex buildings, the measure of fields, and the case study of practical energy savings.
    First the pumping quantity and pumping head of water lifting pumps have been discussed. By analyzing the design charts of water pumping system of one hundred complex buildings, the mostly adopted types of water pumps been classified as ground-vertical, ground-horizontal and submersible pumps. Among these pumps, the ground-vertical type is the major adopted type, about 51 percent. Over half of cases have apparently over-designed water quantities. Only 32 percent of all case studies has appropriate lift head. The over-designed lift head will result in larger pumping quantity, more shaft horsepower and overloading.
    After implementing seven case investigations in fields, the results have shown that only few made-in-Taiwan water pumps can reach the performance listed on pump labels. The reason may come from material weakness, or leaking the detailed design for selecting proper water pumps. This research has also investigate two finished projects, about analyzing the feasibility of improvement and benefit of energy saving. Comparing the data before and after system promotion, the renovation of water pumps can simultaneously reduce the maximum necessary electricity and usage readings. The maximum necessary electricity can be averagely reduced 34.79 percent, and the average usage readings can be averagely reduced 7.46 percent. The total rate can be saved about 19.16 percent. Based only on the cost of changing the water pumps, the duration of cost-effective balance will be 3.3 and 5 years, respectively. The duration of cost-effective balance will become 5.1 and 13.6 years, respectively, if additionally counting stainless pipes and valves into the total cost. The practical experience evidences that the improvement is cost effective.

    第 1 章 緒論 ................................................................................................................ 1 1-1 研究動機與目的 ............................................................................................ 1 1-2 研究範圍與內容 ............................................................................................ 1 1-2.1 研究範圍 ............................................................................................... 1 1-2.2 研究內容 ............................................................................................... 2 1-3 相關文獻回顧 ................................................................................................ 2 1-3.1 文獻小結 ............................................................................................... 5 1-4 研究方法與流程 ............................................................................................ 5 第 2 章 自來水揚水泵設計概述 ................................................................................ 6 2-1 揚水管徑及水量之計算 ................................................................................ 6 2-2 揚水管總揚程及管路摩擦損失計算 ............................................................ 8 2-2.1 揚水管總揚程計算 ............................................................................... 8 2-2.2 管路摩擦損失計算 ............................................................................. 10 2-3 自來水揚水泵選用方法與常用型式介紹 .................................................. 13 2-3.1 揚水泵的選用方法 ............................................................................. 13 2-3.2 常用自來水揚水泵型式介紹 ............................................................. 17 2-4 量測儀器及流程 .......................................................................................... 24 2-5 電費計算分析 .............................................................................................. 29 2-6 自來水揚水泵之啟動與水錘控制種類 ...................................................... 32 第 3 章 集合住宅大樓自來水揚水泵現況調查與分析 .......................................... 33 3-1 集合住宅大樓自來水揚水泵設備之設置現況 .......................................... 33 3-1.1 自來水揚水泵型式設置現況 ............................................................. 33 3-1.2 自來水揚水泵揚水量設置現況 ......................................................... 34 3-1.3 自來水揚水泵揚程設置現況 ............................................................. 35 3-2 集合住宅大樓自來水揚水泵之水量、電力耗能及揚程量測 .................. 36 3-2.1 案例一自來水揚水泵量測結果分析 ................................................. 37 3-2.2 案例二自來水揚水泵量測結果分析 ................................................. 40 3-2.3 案例三自來水揚水泵量測結果分析 ................................................. 43 3-2.4 案例四自來水揚水泵量測結果分析 ................................................. 46 3-2.5 案例五自來水揚水泵量測結果分析 ................................................. 49 3-2.6 案例六自來水揚水泵量測結果分析 ................................................. 52 3-2.7 案例七自來水揚水泵量測結果分析 ................................................. 55 3-3 調查與量測結果 .......................................................................................... 61 第 4 章 集合住宅大樓自來水揚水泵節能改善效益分析 ...................................... 62 4-1 實例(一) ....................................................................................................... 62 4-1.1 建築物基本資料 ................................................................................. 62 4-1.2 設備容量改善前、後比較分析 ......................................................... 62 4-1.3 以台灣電力公司電費用電量比較改善前、後之節能效益分析 ..... 64 4-2 實例(二) ....................................................................................................... 78 4-2.1 建築物基本資料 ................................................................................. 78 4-2.2 設備改善前、後比較分析 ................................................................. 78 4-2.3 以台灣電力公司電費用電量比較改善前、後之節能效益分析 ..... 80 4-3 小結 .............................................................................................................. 95 第 5 章 結論與建議 .................................................................................................. 96 5-1 結論 .............................................................................................................. 96 5-2 後續研究建議 .............................................................................................. 98

    1. 賴榮平,2007,永續發展下既有公寓大廈物理環境與建築設備更新改造策略之
    研究(ΙΙ),國科會
    2. 賴榮平,2006,永續發展下既有公寓大廈物理環境與建築設備更新改造策略之
    研究(Ι),國科會
    3. 王基翰,2006,既有集合住宅給排水衛生設備共用部份改造需求之研究,國立
    成功大學建築系碩士論文
    4. 蔣順田,2004,高層集合住宅大樓公共設備節能綜效之研究-以台灣南部地區 為例,國立成功大學建築系碩士論文
    5. 黃輝雄,2004,高層集合住宅綠建築設計可行性評估-以高雄市民間開發案為例,
    國立成功大學建築系碩士論文
    6. 謝宏仁,2003,台灣都市住宅設備現況永續性及評估系統擬議,國立成功大學
    建築系博士論文
    7. 李政賢 ,2003,以永續觀點探討既存建築物改善更新可行性之研究—以台灣南部
    辦公建築為例,國立成功大學建築系碩士論文
    8. 李惟義,2002,以維護觀點探討集合住宅給排水管路配設空間之研究,國立成功
    大學建築系碩士論文
    9. 何恭聖,2001,住宅給排水衛生設備健康檢查之研究,國立成功大學建築系碩士
    論文
    10. 陳裕益,2000,永續發展理念下都市住宅設備現況調查分析,國立成功大學建築系碩士論文
    11. 廖文郎 ,1997,既有公共集會型建築設備系統之評估與更新,國立台灣科技
    大學工程技術研究所碩士論文
    12. 高英欽,1996,中高層集合住宅日常管理費構成之研究-以南部地區為例,國立
    成功大學建築系碩士論文
    13. 陳安國(2002),《建築物抽水系統之設計、調查與評估》,逢甲碩論
    14. 黃瑞榮(2003)《建築物抽水管路系統之設計方法》,逢甲碩論
    15. 台灣省自來水公司(2002),《用戶設備申裝作業要點》91年7月
    16. 台北市自來水事業處用水設備設計、施工、檢驗作業規範(87年12月)
    17. HASS 206 給排水設備規準‧同解說,空氣調和‧衛生工學會規格
    18. 顧孝偉,2003,「住宅用電量監測與解析之研究」,成大碩論
    19. 林憲德、郭柏巖、顧孝偉,2003,「住宅生活模式與耗電特性解析」
    20. 高英欽,1997,「中高層集合住宅日常管理費構成之研究」,成大碩論
    21. 經濟部能源局,2004,「集合住宅節能技術手冊」
    22. 周宏亮等5人,「具電力電容器湧入電流抑制與過壓/過電流保護技術之自動功因調整器」,2004,12,電機技師108期
    23. 建築技術規則,1997,詹氏書局,P.31
    24. 台灣電力公司電價表,2005,第三章
    25. Alan S.Fung,Adam Aulenback,Alex Ferguson,V.Ismet Ugursal,2003,Standby power requirements of household appliances in Canada,Energy and Buildings Vol 35,P217~228
    26. Luis Lopes,Shuichi Hokoi,Hisashi Miura,Kondo Shuhei,2005,Energy efficiency and energy savings in Japanese residential buildings-research methodology and surveyed results,Energy and Buildings 37,P698~706
    27. Miguel Aloysio Sattler,Alice Maria Dreher Hansen,Electrical energy consumption patterns in different types of residential building in City Porto Alergre,Brazil

    下載圖示 校內:立即公開
    校外:2008-07-30公開
    QR CODE