| 研究生: |
胡庭源 Hu, Ting-Yuan |
|---|---|
| 論文名稱: |
圓孔管在循環彎曲負載下橢圓化成長與臨界橢圓化之研究 Ovalization Growth and Critical Ovalization of Round-Hole Tubes under Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 圓孔管 、循環彎曲 、橢圓化 、臨界橢圓化 、循環圈數 、彎矩 、曲率 |
| 外文關鍵詞: | Round-Hole Tubes, Cyclic Bending, Ovalization, Critical Ovalization, Number of Cycles, Moment, Curvature |
| 相關次數: | 點閱:171 下載:37 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文係研究6061-T6鋁合金圓孔管在循環彎曲下的橢圓化成長與臨界橢圓化,研究採用五種不同圓孔直徑(2、4、6、8與10 mm)在不同的曲率控制循環彎曲負載,量測橢圓化成長變化並找出橢圓化與循環圈數的關係。實驗結果顯示,橢圓化與循環圈數的曲線大致可分成三個階段,初始階段、第二階段和第三階段,且橢圓化成長幾乎都在初始階段和第二階段,在第三階段橢圓化會急遽的上升,隨之而來的是圓孔管的斷裂。由於橢圓化與循環圈數曲線的趨勢與2016年Lee et al. [8]所研究環圓周尖銳凹槽的6061-T6鋁合金的橢圓化與循環圈數曲線非常相似,所以本文修改相關的理論來描述不同圓孔直徑的6061-T6鋁合金圓孔管在不同曲率控制循環彎曲下初始及第二階段橢圓化與循環圈數的關係。此外,根據實驗的結果,本文也提出理論來描述不同圓孔直徑的6061-T6鋁合金圓孔管在不同曲率控制循環彎曲下臨界橢圓化與控制曲率的關係,理論分析與實驗結果相比較後發現,理論可合理描述實驗結果。
This paper studies the ovalization growth and critical ovalization of 6061-T6 aluminum alloy round-hole tubes subjected to cyclic bending. This paper uses the round-hole tubes with five different diameters of the round hole (2, 4, 6, 8, and 10 mm) subjected to cyclic bending at different curvatures for measuring the ovalization, the number of bending cycles and the critical ovalization. The experimental result shows that the curve of the ovalization and the number of cycles can be divided into three stages, the initial, second and third stages. The trend of this curve was similar to that of sharp-notched 304 stainless steel tubes tested by Lee et al. [8], thus, the empirical formulation proposed by them was used for simulating the aforementioned relationship in the initial and second stages. In addition, a theoretical formula was also proposed to simulate of the relationship between the critical ovalization and controlled curvature. The simulation results were compared with the experimental results, and it was found that the theoretical analysis could reasonably reproduce the experimental results.
1. W. F. Pan, T. R. Wang and C. M. Hsu, A curvature-ovalization measurement apparatus for circular tubes under cyclic bending, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
2. E. Corona, L. H. Lee and S. Kyriakides, Yield anisotropic effects on buckling of circular tubes under bending.” International Journal of Solids and Structures, Vol. 43, No. 22-23, pp. 7099-7118 (2006).
3. K. H. Chang and W. F. Pan, Buckling life estimation of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
4. K. L. Lee, W. F. Pan and J. N. Kuo, The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
5. K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
6. K. L. Lee, C. M. Hsu and W. F. Pan, The influence of mean curvatures on the collapse of sharp-notched circular tubes under cyclic bending, Journal of Chinese Society of Mechanical Engineering, Vol. 34, No. 5, pp. 461-468 (2013).
7. M. Elchalakani, A. Karrech and M. F. Hassanein, Plastic and yield slenderness limits for circular concrete filled tubes subjected to static pure bending, Thin-Walled Structures, Vol. 109, pp. 50-64 (2016).
8. K. L. Lee, C. C. Chung and W. F. Pan, Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending, Journal of Chinese Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).
9. M. Zeinoddini, M. Mo'tamedi, A. P. Zandi, M. Talebi, M. Shariati and M. Ezzati, On the ratcheting of defective low-alloy, high-strength steel pipes (API-5L X80) under cyclic bending: an experimental study, International Journal of Mechanical Sciences, Vol. 130, pp. 518-533 (2017).
10. M. Zeinoddini, M. Mo’tamedi, S. A. Gharebaghi and G. A. R. Parke, On the ratcheting response of circular steel pipes subject to cyclic inelastic bending: A closed-form analytical solution, International Journal of Mechanical Sciences, Vol. 117, pp. 243-257 (2016).
11. S. Kyriakides, D. Jiang, N. J. Bechle and C. M. Landis, Bending of pseudoelastic NiTi tubes, International Journal of Solids and Structures, Vol. 124, pp. 192-214 (2017).
12. D. Jiang, S. Kyriakides, N. J. Bechle and C. M. Landis, Bending of pseudoelastic NiTi tubes”, International Journal of Solids and Structures, Vol. 124, pp. 192-214 (2017).
13. K. L. Lee, K. H. Chang and W. F. Pan, Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
14. D. Bilston, D. Ruan, A. Candido and Y. Durandet, Parametric study of the cross-section shape of aluminum tubes in dynamic three-point bending, Journal of Thin-Walled Structures, Vol. 136, pp. 315-322 (2019).
15. K. L. Lee, M. L. Weng and W. F. Pan, On the failure of round-hole tubes under cyclic bending, Journal of Chinese Society of Mechanical Engineering, Vol. 40, No. 6, pp. 663-673 (2019).
16. K. L. Lee, L. C. Chin and W. F. Pan, Elastoplastic response and failure of round-hole tubes under cyclic bending, IFORMATICA, Vol. 31, No. 4, pp. 23-41 (2020).