| 研究生: |
吳宇軒 Wu, Yu-Shiuan |
|---|---|
| 論文名稱: |
連續纖維強化之壓力容器的高等分析技術 Advanced Analysis Techniques for Continuous Fiber Reinforced Pressure Vessels |
| 指導教授: |
許書淵
Hsu, Su-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 有限元素法 、複合材料 、壓力容器 、自動化纖維鋪放 、纖維繞製 |
| 外文關鍵詞: | composite material, pressure vessel, finite element, filament winding, automated fiber placement |
| 相關次數: | 點閱:31 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合材料壓力容器 (CPVs) 由於纖維排列交織複雜,導致建模或分析困難。目前大多數方法使用簡化的軸對稱模型:假設任一位置的非軸向層僅含有均勻正纖維角度和相同大小之負纖維角度,並在不同位置改變疊層厚度。然而,這種簡化方法通常會導致嚴重低估壓力容器的相對較薄區域產生的局部應力,因此不適合進行詳細設計或應用於太空的最佳化。本研究旨在開發一種能夠準確且快速地構建連續纖維強化之壓力容器有限元模型的方法,有效的提高設計與評估時的可靠性。本研究開發了一個名為Structural Analysis Process for Composite Pressure Vessels (SAPCPV) 的腳本,該腳本在Abaqus中運行,根據指定的設計參數(如幾何外型、纖維材料和纖維束包覆桶槽的製造參數)和負載,自動化生成有限元模型、設置和執行分析。SAPCPV使用了由研究團隊成員開發的Laminate Modeling for Composite Pressure Vessels (LMCPV) 程式碼,該程式碼根據指定的精度計算每個元素的疊層定義。此外,SAPCPV還能與由研究團隊成員開發的貝葉斯最佳化演算法框架Bayesian Optimization Framework for Finite Element Models (BOFFEM) 結合。在貝葉斯最佳化迭代中,SAPCPV會自動獲取設計參數的值,並且返還分析結果給BOFFEM。為了展示整個過程,本研究使用SAPCPV分析以簡化方法設計的燃料桶槽,分析其首層失效和最終失效。本論文中還展示了通過使用這一先進方法進行的最佳化過程,顯著減輕了重量並提高了安全裕度。
Composite Pressure Vessels are difficult to model or analyze due to the complex interwoven arrangement of the fibers. Currently, most approaches use simplified axisymmetric models where all the off-axis layers are balanced angle plies with variation in ply thickness. However, these approaches often result in substantially underestimated local stresses for relatively thinner pressure vessels and therefore are not suitable for detailed design or optimization for space applications. This research aims to develop a process for accurately and rapidly building finite-element models for continuous fiber-reinforced pressure vessels and effectively improve the reliability of design assessment. A script (SAPCPV) was developed in the research, which runs in Abaqus to automate the generation of a finite element model and setting up and execution of analyses according to specified design parameters (e.g., geometrical, material, and filament winding parameters) and loadings. SAPCPV employs a code (LMCPV) that was developed by a research partner to calculate the laminate definition for each finite element according to specified resolution. Moreover, SAPCPV can run within a Bayesian optimization framework developed by another partner. In the evaluation of each design trial during the Bayesian optimization, values of design variables are automatically provided to SAPCPV, and SAPCPV returns results of the analysis that it invokes. To demonstrate the entire process, a pressure vessels designed by a simplified approach was analyzed to investigate its first-ply failure and final failure by using SAPCPV. The tank was further optimized by using the advanced process, resulting in significant weight reductions and increases in safety margin.
1. Azeem, M., et al., Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review. Journal of Energy Storage, 2022. 49: p. 103468.
2. Azevedo, C.B., et al., Influence of mosaic pattern on hygrothermally-aged filament wound composite cylinders under axial compression. Journal of Composite Materials, 2020. 54(19): p. 2651-2659.
3. Chun Hsu, C., Variable-fidelity Laminate Definition for Composite Overwrapped Pressure Vessels. 2024.
4. Shih ting, Y., Application of Bayesian Optimization (BO) and Finite Element Analysis to Design Continuous Fiber-reinforced Composite Pressure Vessels. 2024.
5. Park, G., H. Jang, and C. Kim, Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4). Journal of Mechanical Science and Technology, 2021. 35(8): p. 3507-3517.
6. Air, A., M. Shamsuddoha, and B. Gangadhara Prusty, A review of Type V composite pressure vessels and automated fibre placement based manufacturing. Composites Part B: Engineering, 2023. 253: p. 110573.
7. Oromiehie, E., et al., Automated Fibre Placement based Composite Structures: Review on The Defects, Impacts and Inspections Techniques. Composite Structures, 2019. 224: p. 110987.
8. McCarville, D., et al., Design, Manufacture and Test of Cryotank Components. 2017.
9. Velosa, J.C., et al., Development of a new generation of filament wound composite pressure cylinders. Composites Science and Technology, 2009. 69(9): p. 1348-1353.
10. Wang, Y., et al. Finite element modeling of carbon fiber reinforced polymer pressure vessel. in 2010 International Conference on Educational and Network Technology. 2010.
11. Wu, Q.G., et al., Stress and Damage Analyses of Composite Overwrapped Pressure Vessel. Procedia Engineering, 2015. 130: p. 32-40.
12. Atul, S.T., et al. Finite element analysis of composite overwrapped pressure vessel for hydrogen storage. in 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2016.
13. Alam, S., et al., Design and development of a filament wound composite overwrapped pressure vessel. Composites Part C: Open Access, 2020. 2: p. 100045.
14. CADWIND Filament Winding Software: winding patterns explained. [Internet] 2018; Available from: https://www.youtube.com/watch?v=9E_bLlWvThU.
15. Vasiliev, V.V. and R.M. Jones, Composite Pressure Vessels: Design, Analysis, and Manufacturing. 2009: Bull Ridge Pub.
16. Corp, D.S., ABAQUS/Standard User's Manual. 2020.