簡易檢索 / 詳目顯示

研究生: 吳宇軒
Wu, Yu-Shiuan
論文名稱: 連續纖維強化之壓力容器的高等分析技術
Advanced Analysis Techniques for Continuous Fiber Reinforced Pressure Vessels
指導教授: 許書淵
Hsu, Su-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 97
中文關鍵詞: 有限元素法複合材料壓力容器自動化纖維鋪放纖維繞製
外文關鍵詞: composite material, pressure vessel, finite element, filament winding, automated fiber placement
相關次數: 點閱:31下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複合材料壓力容器 (CPVs) 由於纖維排列交織複雜,導致建模或分析困難。目前大多數方法使用簡化的軸對稱模型:假設任一位置的非軸向層僅含有均勻正纖維角度和相同大小之負纖維角度,並在不同位置改變疊層厚度。然而,這種簡化方法通常會導致嚴重低估壓力容器的相對較薄區域產生的局部應力,因此不適合進行詳細設計或應用於太空的最佳化。本研究旨在開發一種能夠準確且快速地構建連續纖維強化之壓力容器有限元模型的方法,有效的提高設計與評估時的可靠性。本研究開發了一個名為Structural Analysis Process for Composite Pressure Vessels (SAPCPV) 的腳本,該腳本在Abaqus中運行,根據指定的設計參數(如幾何外型、纖維材料和纖維束包覆桶槽的製造參數)和負載,自動化生成有限元模型、設置和執行分析。SAPCPV使用了由研究團隊成員開發的Laminate Modeling for Composite Pressure Vessels (LMCPV) 程式碼,該程式碼根據指定的精度計算每個元素的疊層定義。此外,SAPCPV還能與由研究團隊成員開發的貝葉斯最佳化演算法框架Bayesian Optimization Framework for Finite Element Models (BOFFEM) 結合。在貝葉斯最佳化迭代中,SAPCPV會自動獲取設計參數的值,並且返還分析結果給BOFFEM。為了展示整個過程,本研究使用SAPCPV分析以簡化方法設計的燃料桶槽,分析其首層失效和最終失效。本論文中還展示了通過使用這一先進方法進行的最佳化過程,顯著減輕了重量並提高了安全裕度。

    Composite Pressure Vessels are difficult to model or analyze due to the complex interwoven arrangement of the fibers. Currently, most approaches use simplified axisymmetric models where all the off-axis layers are balanced angle plies with variation in ply thickness. However, these approaches often result in substantially underestimated local stresses for relatively thinner pressure vessels and therefore are not suitable for detailed design or optimization for space applications. This research aims to develop a process for accurately and rapidly building finite-element models for continuous fiber-reinforced pressure vessels and effectively improve the reliability of design assessment. A script (SAPCPV) was developed in the research, which runs in Abaqus to automate the generation of a finite element model and setting up and execution of analyses according to specified design parameters (e.g., geometrical, material, and filament winding parameters) and loadings. SAPCPV employs a code (LMCPV) that was developed by a research partner to calculate the laminate definition for each finite element according to specified resolution. Moreover, SAPCPV can run within a Bayesian optimization framework developed by another partner. In the evaluation of each design trial during the Bayesian optimization, values of design variables are automatically provided to SAPCPV, and SAPCPV returns results of the analysis that it invokes. To demonstrate the entire process, a pressure vessels designed by a simplified approach was analyzed to investigate its first-ply failure and final failure by using SAPCPV. The tank was further optimized by using the advanced process, resulting in significant weight reductions and increases in safety margin.

    摘要 i Abstract ii 致謝 vii 目錄 viii 圖目錄 xi 表目錄 xvi 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 文獻回顧 3 1.4 本文架構 5 第二章 自動化建模分析- SAPCPV 6 2.1 自動化建模 7 2.1.1 幾何模型 7 2.1.2 網格設置 11 2.1.3 疊層設置 12 2.1.3.1 FW之螺旋包覆 15 2.1.3.2 AFP之螺旋包覆 16 2.1.3.3 環向纏繞與軸向包覆 17 2.2 分析設置 18 2.2.1 靜態內壓分析 18 2.2.1.1 材料參數設置 18 2.2.1.2 拘束條件設置 20 2.2.1.3 分析步驟設置 20 2.2.1.4 邊界條件設置 21 2.2.1.5 負載條件設置 22 2.2.2 爆破分析 24 2.2.2.1 材料參數設置 24 2.2.2.2 拘束條件設置 25 2.2.2.3 分析步驟設置 25 2.2.2.4 邊界條件設置 26 2.2.2.5 負載條件設置 26 2.3 分析結果與結果抽取 27 2.3.1 靜態內壓分析結果 27 2.3.2 爆破分析結果 28 第三章 原始纖維纏繞桶槽分析 29 3.1 靜態內壓分析 30 3.2 爆破分析 32 3.3 本章結語 34 第四章 最佳化纖維桶槽內壓分析 35 4.1 最佳化簡介 36 4.2 幾何外型最佳化桶槽內壓分析 37 4.2.1 安全係數1.07,外型最佳化FW桶槽 38 4.2.2 安全係數1.3,外型最佳化FW桶槽 41 4.2.3 安全係數1.5,外型最佳化FW桶槽 44 4.2.4 安全係數1.07,外型最佳化AFP桶槽 47 4.2.5 安全係數1.5,外型最佳化AFP桶槽 50 4.3 幾何外型最佳化桶槽敏感度分析 53 4.3.1 安全係數1.5,敏感度最佳化FW桶槽 53 4.3.2 安全係數1.5,敏感度最佳化AFP桶槽 56 4.4 本章結語 59 第五章 最佳化纖維桶槽爆破分析 63 5.1 安全係數1.07,外型最佳化FW桶槽 64 5.2 安全係數1.3,外型最佳化FW桶槽 66 5.3 安全係數1.5,外型最佳化FW桶槽 68 5.4 安全係數1.07,外型最佳化AFP桶槽 70 5.5 安全係數1.5,外型最佳化AFP桶槽 72 5.6 本章結語 74 第六章 結論與未來展望 75 6.1 結論 75 6.2 未來展望 76 第七章 參考資料 77

    1. Azeem, M., et al., Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review. Journal of Energy Storage, 2022. 49: p. 103468.
    2. Azevedo, C.B., et al., Influence of mosaic pattern on hygrothermally-aged filament wound composite cylinders under axial compression. Journal of Composite Materials, 2020. 54(19): p. 2651-2659.
    3. Chun Hsu, C., Variable-fidelity Laminate Definition for Composite Overwrapped Pressure Vessels. 2024.
    4. Shih ting, Y., Application of Bayesian Optimization (BO) and Finite Element Analysis to Design Continuous Fiber-reinforced Composite Pressure Vessels. 2024.
    5. Park, G., H. Jang, and C. Kim, Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4). Journal of Mechanical Science and Technology, 2021. 35(8): p. 3507-3517.
    6. Air, A., M. Shamsuddoha, and B. Gangadhara Prusty, A review of Type V composite pressure vessels and automated fibre placement based manufacturing. Composites Part B: Engineering, 2023. 253: p. 110573.
    7. Oromiehie, E., et al., Automated Fibre Placement based Composite Structures: Review on The Defects, Impacts and Inspections Techniques. Composite Structures, 2019. 224: p. 110987.
    8. McCarville, D., et al., Design, Manufacture and Test of Cryotank Components. 2017.
    9. Velosa, J.C., et al., Development of a new generation of filament wound composite pressure cylinders. Composites Science and Technology, 2009. 69(9): p. 1348-1353.
    10. Wang, Y., et al. Finite element modeling of carbon fiber reinforced polymer pressure vessel. in 2010 International Conference on Educational and Network Technology. 2010.
    11. Wu, Q.G., et al., Stress and Damage Analyses of Composite Overwrapped Pressure Vessel. Procedia Engineering, 2015. 130: p. 32-40.
    12. Atul, S.T., et al. Finite element analysis of composite overwrapped pressure vessel for hydrogen storage. in 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2016.
    13. Alam, S., et al., Design and development of a filament wound composite overwrapped pressure vessel. Composites Part C: Open Access, 2020. 2: p. 100045.
    14. CADWIND Filament Winding Software: winding patterns explained. [Internet] 2018; Available from: https://www.youtube.com/watch?v=9E_bLlWvThU.
    15. Vasiliev, V.V. and R.M. Jones, Composite Pressure Vessels: Design, Analysis, and Manufacturing. 2009: Bull Ridge Pub.
    16. Corp, D.S., ABAQUS/Standard User's Manual. 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE