簡易檢索 / 詳目顯示

研究生: 李佳容
Lee, Chia-Jung
論文名稱: 以第一原理計算結合類神經網路篩選鋰電池電解液添加劑
Combining neural network with first-principles calculations for computational screening of electrolyte additives in lithium ion batteries
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 114
中文關鍵詞: 第一原理計算鋰電池電解液添加劑類神經網路
外文關鍵詞: First-principle calculation, Lithium ion battery, electrolyte additive, artificial neural network
相關次數: 點閱:84下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對185種鋰電池電解液添加劑分子進行計算篩選,以第一原理分別計算出氣態與溶液態添加劑分子之分子軌域能量值、氧化與還原電位,並針對各項能量值與電位值進行相依性分析。再以類神經網路模型進一步建立分子結構因子—如分子內所含原子種類、個數與鍵結數量等等—與分子軌域能量值、氧化還原電位之間的映射關係。
    本研究第一部分為將計算的分子軌域能量值和氧化還原電位間建立一線性迴歸方程,分析其線性相依性。可從添加劑分子之EHOMO(Gas)由線性關係推得OP(Solvent),並附上誤差項;亦可由ELUMO(Gas)推得RP(Solvent)。由於帶電荷溶液態分子結構優化過程不易達收斂,計算過程耗時,由這些線性關係可簡化獲得添加劑分子氧化還原電位的計算過程,從電中性分子即可推估OP(Solvent)與RP(Solvent),可針對鋰電池系統適合的OP(Solvent)、RP(Solvent)值進行初步篩選,提高實驗效率。
    本研究第二部分欲分析分子結構因子與氧化還原電位之間的關係。建立一類神經網路模型,將第一部分中計算之添加劑分子列為類神經網路學習樣本,針對不同學習參數進行測試,建立一完整類神經網路架構,並將網路輸出值與目標值進行迴歸分析以檢驗網路學習效果。由於類神經網路運作,其各項結構因子加權值的大小可解析成該結構因子對目標值之影響強弱;因此,可從分子結構中推得OP(Solvent)、RP(Solvent)之預估值,亦可提高實驗效率。

    Recently, a great deal of research regarding energy density and voltage of lithium ion batteries (LIBs) which are being developed for serving grid support in many applications have gained increasing interest. However, high voltage application in LIBs makes it unstable and lowers performance crucially.
    Using various solvent formulas and functional additives can address the issue with stabilizing the electrolytes from decomposition. The selection of the best additive among phosphides, sulfonate esters and lactam, etc., which perfectly fits the electrodes, can accelerate and improve the developments in LIBs. Several parameters, including energy of lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital (HOMO), oxidation potentials (OPs), reduction potentials (RPs) can be used for first screening of additive selection. In this study, first-principle density functional theory calculations were utilized and the solvent effect has been considered. It is inferred that there are certain correlations between EHOMO with OP and ELUMO with RP.
    An artificial neural network (ANN) model is developed and the calculation efficiency of the entire scheme can be improved. It is demonstrated that systematic machine learning of molecular structure factors is capable of describing the EHOMO and ELUMO. Furthermore, the developed model can also be used for estimating the EHOMO and ELUMO of newly designed electrolyte additives from the structure factors with high accuracy.

    摘要 I 誌謝 XVIII 目錄 XIX 表目錄 XXI 圖目錄 XXII 第一章 前言 1 第二章 文獻回顧 4 2.1 鋰離子電池文獻回顧 4 2.2 電解液添加劑發展概況 6 2.3 電解液添加劑之模擬相關文獻 8 第三章 原子級模擬基礎理論 10 3.1 第一原理計算(First Principles) 10 3.2 密度泛函(DFT)理論[41] 11 3.2.1 Hartree–Fock, HF 方程[45] 11 3.2.2 Kohn-Sham, KS 方程[46] 12 3.3 基底函數 (Basis Set) [52] 14 3.4 溶劑化效應(Solvent Effect) 16 3.5 週期性邊界條件(Periodical boundary condition) 17 第四章 物理模型與模擬設計 18 4.1 電解液、添加劑分子介紹 18 4.1.1 碳酸乙烯酯(Ethylene carbonate, EC) 18 4.1.2 添加劑列表 18 4.2 模擬方法(計算方法) 19 4.2.1 分子結構優化與能量計算 19 4.2.2 模擬流程 20 4.3 量化分析方法 23 4.3.1 類神經網路簡介[1, 156] 23 4.3.2 類神經網路模型 24 4.3.3 倒傳遞類神經網路(Back-propagation Network) 25 4.3.4 類神經網路模式架構 31 4.3.5 類神經網路模型檢驗指標 33 第五章 結果與討論 36 5.1 添加劑在不同狀態的相關性 36 5.1.1 不同狀態下的添加劑分子軌域能量值之相關性 36 5.1.2 相同狀態下,添加劑分子軌域能量值與氧化還原電位之相關性 38 5.1.3 不同狀態下,添加劑分子軌域能量值與氧化還原電位之相關性 39 5.1.4 小結 41 5.2 分子軌域能量計算結果 42 5.3 氧化還原電位計算結果 43 5.4 類神經網路量化分析結果 43 5.4.1 類神經網路架構參數測試 43 5.4.2 類神經網路模型分析結果 52 5.4.3 類神經網路模型預測結果 55 5.4.4 以類神經網路模型預測結果進行新電解液添加劑之設計 57 第六章 結論 60 第七章 參考文獻 61 第八章 附錄 74 8.1 鋰電池電解液添加劑列表 74 8.2 分子軌域能量計算結果 95 8.3 氧化還原電位計算結果 105

    1. 蘇木春 and 張孝德, 機器學習: 類神經網路, 模糊系統以及基因演算法則. 1997: 臺北市: 全華科技圖書股份有限公司.
    2. Thackeray, M., Lithium-ion batteries: An unexpected conductor. Nature materials, 2002. 1(2): p. 81-82.
    3. Yang, M. and J. Hou, Membranes in lithium ion batteries. Membranes, 2012. 2(3): p. 367-383.
    4. Zuo, X., et al., Electrochemical reduction of 1, 3-propane sultone on graphite electrodes and its application in Li-ion batteries. Electrochemical and solid-state letters, 2006. 9(4): p. A196-A199.
    5. Zhang, B., et al., Role of 1, 3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation. The Journal of Physical Chemistry C, 2015. 119(21): p. 11337-11348.
    6. Hu, M., X. Pang, and Z. Zhou, Recent progress in high-voltage lithium ion batteries. Journal of Power Sources, 2013. 237: p. 229-242.
    7. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    8. Haregewoin, A.M., A.S. Wotango, and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 2016. 9(6): p. 1955-1988.
    9. Sasaki, T., et al., Suppression of an alkyl dicarbonate formation in Li-ion cells. Journal of The Electrochemical Society, 2005. 152(10): p. A2046-A2050.
    10. Chang, C.-C., et al., Vinylene carbonate and vinylene trithiocarbonate as electrolyte additives for lithium ion battery. Journal of Power Sources, 2011. 196(22): p. 9605-9611.
    11. Matsuoka, O., et al., Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell. Journal of power sources, 2002. 108(1): p. 128-138.
    12. Xu, S.-D., et al., New insight into vinylethylene carbonate as a film forming additive to ethylene carbonate-based electrolytes for lithium-ion batteries. Int. J. Electrochem. Sci, 2013. 8(6): p. 8058-8076.
    13. Ergun, S., et al., Controlling oxidation potentials in redox shuttle candidates for lithium-ion batteries. The Journal of Physical Chemistry C, 2014. 118(27): p. 14824-14832.
    14. Arakawa, M. and J.-i. Yamaki, Anodic oxidation of propylene carbonate and ethylene carbonate on graphite electrodes. Journal of power sources, 1995. 54(2): p. 250-254.
    15. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
    16. Chen, R., et al., Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries. Journal of Power Sources, 2007. 172(1): p. 395-403.
    17. McMillan, R., et al., Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999. 81: p. 20-26.
    18. Walkowiak, M., et al., Enhanced graphite passivation in Li-ion battery electrolytes containing disiloxane-type additive/co-solvent. Journal of Solid State Electrochemistry, 2010. 14(12): p. 2213-2218.
    19. Krämer, E., et al., 1-Fluoropropane-2-one as SEI-forming additive for lithium-ion batteries. Electrochemistry Communications, 2012. 16(1): p. 41-43.
    20. Park, G., et al., The important role of additives for improved lithium ion battery safety. Journal of Power Sources, 2009. 189(1): p. 602-606.
    21. Yao, W., et al., Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries. Energy & Environmental Science, 2009. 2(10): p. 1102-1108.
    22. Hu, Y., et al., Tetrachloroethylene as new film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries with graphitic anode. Solid State Ionics, 2005. 176(1): p. 53-56.
    23. Lee, J.-T., et al., Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries. Journal of The Electrochemical Society, 2005. 152(9): p. A1837-A1843.
    24. Santner, H., et al., Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. Journal of power sources, 2003. 119: p. 368-372.
    25. Mogi, R., et al., Effects of some organic additives on lithium deposition in propylene carbonate. Journal of The Electrochemical Society, 2002. 149(12): p. A1578-A1583.
    26. Abe, K., et al., Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochimica Acta, 2004. 49(26): p. 4613-4622.
    27. Wrodnigg, G.H., J.O. Besenhard, and M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium‐Ion Cells with Graphitic Anodes. Journal of The Electrochemical Society, 1999. 146(2): p. 470-472.
    28. Shu, Z., et al., Use of chloroethylene carbonate as an electrolyte solvent for a lithium ion battery containing a graphitic anode. Journal of the Electrochemical Society, 1995. 142(9): p. L161-L162.
    29. Wrodnigg, G.H., et al., Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochemistry communications, 1999. 1(3): p. 148-150.
    30. Cuisinier, M., N. Dupré, and D. Guyomard, Control of LiFePO 4 air-aging through the use of electrolyte additive. Electrochemistry Communications, 2014. 38: p. 138-141.
    31. Takeuchi, T., et al., Influence of surface modification of LiCoO 2 by organic compounds on electrochemical and thermal properties of Li/LiCoO 2 rechargeable cells. Journal of Power Sources, 2011. 196(5): p. 2790-2801.
    32. Lee, Y.M., et al., Nature of tris (pentafluorophenyl) borane as a functional additive and its contribution to high rate performance in lithium-ion secondary battery. Electrochemical and Solid-State Letters, 2010. 13(5): p. A55-A58.
    33. Gauthier, M., et al., Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. The journal of physical chemistry letters, 2015. 6(22): p. 4653-4672.
    34. Borodin, O., W. Behl, and T.R. Jow, Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. The Journal of Physical Chemistry C, 2013. 117(17): p. 8661-8682.
    35. Wang, R., C. Buhrmester, and J. Dahn, Calculations of oxidation potentials of redox shuttle additives for Li-ion cells. Journal of the Electrochemical Society, 2006. 153(2): p. A445-A449.
    36. Zhang, X., J.K. Pugh, and P.N. Ross, Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. Journal of The Electrochemical Society, 2001. 148(5): p. E183-E188.
    37. Shao, N., et al., Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. The Journal of Physical Chemistry B, 2011. 115(42): p. 12120-12125.
    38. Han, Y.-K., et al., Computational screening of solid electrolyte interphase forming additives in lithium-ion batteries. Computational and Theoretical Chemistry, 2014. 1031: p. 64-68.
    39. Han, Y.-K., et al., Computational screening of lactam molecules as solid electrolyte interphase forming additives in lithium-ion batteries. Current Applied Physics, 2014. 14(6): p. 897-900.
    40. Han, Y.-K., J. Yoo, and T. Yim, Why is tris (trimethylsilyl) phosphite effective as an additive for high-voltage lithium-ion batteries? Journal of Materials Chemistry A, 2015. 3(20): p. 10900-10909.
    41. 江進福, 波函數與密度泛函. 2001, 物理雙月刊.
    42. Gross, E. and W. Kohn, Time-dependent density-functional theory. Advances in quantum chemistry, 1990. 21: p. 255-291.
    43. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253.
    44. Cohen, A.J., P. Mori-Sánchez, and W. Yang, Insights into current limitations of density functional theory. Science, 2008. 321(5890): p. 792-794.
    45. Hartree, D.R. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. in Mathematical Proceedings of the Cambridge Philosophical Society. 1928. Cambridge University Press.
    46. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
    47. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
    48. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671.
    49. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
    50. Hammer, B., L.B. Hansen, and J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999. 59(11): p. 7413.
    51. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 1988. 38(6): p. 3098.
    52. Boys, S.F. Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1950. The Royal Society.
    53. Cossi, M., et al., Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. Journal of computational chemistry, 2003. 24(6): p. 669-681.
    54. Wang, R.-H., et al., Electrochemical Analysis for Enhancing Interface Layer of Spinel Li4Ti5O12: p-Toluenesulfonyl Isocyanate as Electrolyte Additive. ACS applied materials & interfaces, 2015. 7(42): p. 23605-23614.
    55. Komaba, S., et al., Impact of 2-Vinylpyridine as Electrolyte Additive on Surface and Electrochemistry of Graphite for C∕ LiMn2O4 Li-Ion Cells. Journal of The Electrochemical Society, 2005. 152(5): p. A937-A946.
    56. Korepp, C., et al., Ethyl isocyanate—An electrolyte additive from the large family of isocyanates for PC-based electrolytes in lithium-ion batteries. Journal of Power Sources, 2007. 174(2): p. 628-631.
    57. Kinoshita, S.-c., et al., Effects of cyclic carbonates as additives to γ-butyrolactone electrolytes for rechargeable lithium cells. Journal of Power Sources, 2008. 183(2): p. 755-760.
    58. Wang, X., et al., The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries. Electrochemistry Communications, 2010. 12(3): p. 386-389.
    59. Naruse, S., et al., in JP patent. 2004.
    60. Naji, A., et al., New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries. Electrochimica acta, 2000. 45(12): p. 1893-1899.
    61. Yu, B.T., et al., A study on sulfites for lithium-ion battery electrolytes. Journal of power sources, 2006. 158(2): p. 1373-1378.
    62. Wrodnigg, G.H., J.O. Besenhard, and M. Winter, Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes? Journal of power sources, 2001. 97: p. 592-594.
    63. Yoon, S., J.-J. Cho, and H. Lee, in KR Patent. 2008.
    64. Korepp, C., et al., 2-Cyanofuran—A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries. Journal of power sources, 2006. 158(1): p. 578-582.
    65. Jeon, J., et al., Tuning glycolide as an SEI-forming additive for thermally robust Li-ion batteries. Journal of Materials Chemistry, 2012. 22(39): p. 21003-21008.
    66. Kim, H.-s., et al., Organic electrolytic solution and lithium battery using the same. 2009, Google Patents.
    67. Morigaki, K., et al., in JP Patent. 2000.
    68. Wang, F.-M., et al., Phenylenedimaleimide positional isomers used as lithium ion battery electrolyte additives: Relating physical and electrochemical characterization to battery performance. Journal of Power Sources, 2013. 231: p. 18-22.
    69. Wang, F.-M., et al., Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries. Electrochimica Acta, 2009. 54(12): p. 3344-3351.
    70. Qin, Y., et al., Electrolyte additive to improve performance of MCMB/LiNi 1/3 Co 1/3 Mn 1/3 O 2 Li-ion cell. Journal of Power Sources, 2010. 195(19): p. 6888-6892.
    71. Inose, T., et al., Poly-ether modified siloxanes as electrolyte additives for rechargeable lithium cells. Journal of power sources, 2006. 161(1): p. 550-559.
    72. Takeuchi, T., et al., Carbonate-modified siloxanes as solvents of electrolyte solutions for rechargeable lithium cells. Journal of Power Sources, 2010. 195(2): p. 580-587.
    73. Cha, J., et al., Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro (oxalato) borate, in high-voltage lithium-ion batteries. Journal of Power Sources, 2017. 357: p. 97-106.
    74. Qin, Y., et al., Lithium tetrafluoro oxalato phosphate as electrolyte additive for lithium-ion cells. Electrochemical and Solid-State Letters, 2010. 13(2): p. A11-A14.
    75. Matsuo, Y., et al., Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes. Journal of power sources, 2003. 119: p. 373-377.
    76. Zheng, H., G. Liu, and V. Battaglia, Film-forming properties of propylene carbonate in the presence of a quaternary ammonium ionic liquid on natural graphite anode. The Journal of Physical Chemistry C, 2010. 114(13): p. 6182-6189.
    77. Xu, M., et al., Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive. Journal of Power Sources, 2007. 174(2): p. 705-710.
    78. Lu, R., et al., Boron-substituted graphyne as a versatile material with high storage capacities of Li and H 2: a multiscale theoretical study. Physical Chemistry Chemical Physics, 2013. 15(38): p. 16120-16126.
    79. Hinohara, A., et al., in JP Patent. 2008.
    80. Yong, T., et al., Allyl cyanide as a new functional additive in propylene carbonate-based electrolyte for lithium-ion batteries. Ionics, 2013. 19(8): p. 1099-1103.
    81. Jung, H.M., et al., Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. Journal of Materials Chemistry A, 2013. 1(38): p. 11975-11981.
    82. Li, B., et al., Performance improvement of phenyl acetate as propylene carbonate-based electrolyte additive for lithium ion battery by fluorine-substituting. Journal of Power Sources, 2014. 267: p. 182-187.
    83. Khasanov, M., E. Pazhetnov, and W.C. Shin, Dicarboxylate-substituted ethylene carbonate as an sei-forming additive for lithium-ion batteries. Journal of The Electrochemical Society, 2015. 162(9): p. A1892-A1898.
    84. Li, W. and B.L. Lucht, Inhibition of the detrimental effects of water impurities in lithium-ion batteries. Electrochemical and solid-state letters, 2007. 10(4): p. A115-A117.
    85. Dalavi, S., et al., Effect of added LiBOB on high voltage (LiNi0. 5Mn1. 5O4) spinel cathodes. Electrochemical and Solid-State Letters, 2011. 15(2): p. A28-A31.
    86. Wang, R., et al., Effect of methylene methanedisulfonate as an additive on the cycling performance of spinel lithium titanate electrode. Journal of Alloys and Compounds, 2015. 648: p. 512-520.
    87. Abe, K., et al., Functional electrolyte: Additives for improving the cyclability of cathode materials. Electrochemical and solid-state letters, 2004. 7(12): p. A462-A465.
    88. Xia, L., Y. Xia, and Z. Liu, Thiophene derivatives as novel functional additives for high-voltage LiCoO 2 operations in lithium ion batteries. Electrochimica Acta, 2015. 151: p. 429-436.
    89. Lee, J.-N., et al., N-(triphenylphosphoranylidene) aniline as a novel electrolyte additive for high voltage LiCoO 2 operations in lithium ion batteries. Electrochimica Acta, 2011. 56(14): p. 5195-5200.
    90. Yang, J., et al., Improvement in high-voltage performance of lithium-ion batteries using bismaleimide as an electrolyte additive. Electrochimica Acta, 2014. 121: p. 264-269.
    91. An, Y., et al., The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochimica Acta, 2011. 56(13): p. 4841-4848.
    92. Zhu, Y., et al., Electrolyte additive combinations that enhance performance of high-capacity Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2–graphite cells. Electrochimica Acta, 2013. 110: p. 191-199.
    93. Zhang, J., et al., Artificial interface deriving from sacrificial tris (trimethylsilyl) phosphate additive for lithium rich cathode materials. Electrochimica Acta, 2014. 117: p. 99-104.
    94. Li, J., et al., Tris (trimethylsilyl) borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte. Journal of Power Sources, 2015. 285: p. 360-366.
    95. Choi, J.-A., et al., Effect of organic additives on the cycling performances of lithium metal polymer cells. Journal of power sources, 2008. 178(2): p. 832-836.
    96. Zhu, Y., et al., Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries. Journal of Power Sources, 2014. 246: p. 184-191.
    97. Lee, D.J., et al., Phosphorus derivatives as electrolyte additives for lithium-ion battery: the removal of O 2 generated from lithium-rich layered oxide cathode. Journal of Power Sources, 2013. 243: p. 831-835.
    98. Jia, H., et al., TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. Chemical Communications, 2014. 50(53): p. 7011-7013.
    99. Xu, J., et al., Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film. Electrochimica Acta, 2016. 191: p. 687-694.
    100. Hechenbleickner, I., Stabilized polyvinyl chloride compositions. 1975, Google Patents.
    101. Parthasarathy, R.V., et al., Hardenable antimicrobial composition. 2016, Google Patents.
    102. Chang, C.-C., et al., Trimethyl borate and triphenyl borate as electrolyte additives for LiFePO 4 cathode with enhanced high temperature performance. Journal of Power Sources, 2012. 217: p. 524-529.
    103. SVENSSON, A.M., S. Sunde, and A.O. TEZEL, Lithium ion battery formulations and methods. 2017, Google Patents.
    104. Burns, J., X. Xia, and J. Dahn, The Effect of Trimethoxyboroxine on Carbonaceous Negative Electrodes for Li-Ion Batteries. Journal of The Electrochemical Society, 2013. 160(2): p. A383-A386.
    105. 曹翠華, 三甲基硼環氧烷及三甲氧基環硼氧烷電解液添加劑對磷酸鋰鐵正極材料之特性研究. 2013.
    106. Burns, J., et al., Impedance Reducing Additives and Their Effect on Cell Performance I. LiN (CF3SO2) 2. Journal of The Electrochemical Society, 2012. 159(7): p. A1095-A1104.
    107. Kim, G.-Y. and J. Dahn, The Effect of Some Nitriles as Electrolyte Additives in Li-Ion Batteries. Journal of The Electrochemical Society, 2015. 162(3): p. A437-A447.
    108. Xia, J., et al., A comparative study of a family of sulfate electrolyte additives. Journal of The Electrochemical Society, 2014. 161(3): p. A264-A274.
    109. Zhang, Z., et al., Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science, 2013. 6(6): p. 1806-1810.
    110. Pham, H.Q., et al., Performance enhancement of 4.8 V Li1. 2Mn0. 525Ni0. 175Co0. 1O2 battery cathode using fluorinated linear carbonate as a high-voltage additive. Journal of The Electrochemical Society, 2014. 161(14): p. A2002-A2011.
    111. Kang, Y.-S., et al., 1, 3, 5-Trihydroxybenzene as a film-forming additive for high-voltage positive electrode. Electrochemistry Communications, 2013. 27: p. 26-28.
    112. Yim, T., et al., Understanding the effects of a multi-functionalized additive on the cathode–electrolyte interfacial stability of Ni-rich materials. Journal of Power Sources, 2016. 302: p. 431-438.
    113. Wang, Z., et al., Triethylborate as an electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery. Journal of Power Sources, 2016. 307: p. 587-592.
    114. Wang, K., et al., A comparative study of Si-containing electrolyte additives for lithium ion battery: Which one is better and why is it better. Journal of Power Sources, 2017. 342: p. 677-684.
    115. Huang, W., et al., 4-(Trifluoromethyl)-benzonitrile: A novel electrolyte additive for lithium nickel manganese oxide cathode of high voltage lithium ion battery. Journal of Power Sources, 2014. 267: p. 560-565.
    116. Zhou, M., et al., Enhanced high voltage cyclability of LiCoO 2 cathode by adopting poly [bis-(ethoxyethoxyethoxy) phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries. Applied Surface Science, 2017. 403: p. 260-266.
    117. Huang, W., et al., A novel electrolyte additive for improving the interfacial stability of high voltage lithium nickel manganese oxide cathode. Journal of Power Sources, 2015. 293: p. 71-77.
    118. Yan, G., et al., Beneficial effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the electrochemical properties of LiNi 0.5 Mn 1.5 O 4 cathode material. Journal of Power Sources, 2014. 263: p. 231-238.
    119. Xu, M., et al., Tris (pentafluorophenyl) phosphine: a dual functionality additive for flame-retarding and sacrificial oxidation on LiMn 2 O 4 for lithium ion battery. Materials Chemistry and Physics, 2014. 143(3): p. 1048-1054.
    120. Sun, X., et al., Using a boron-based anion receptor additive to improve the thermal stability of LiPF6-based electrolyte for lithium batteries. Electrochemical and solid-state letters, 2002. 5(11): p. A248-A251.
    121. Dahn, J., et al., High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2, 5-ditertbutyl-1, 4-dimethoxybenzene. Journal of the Electrochemical Society, 2005. 152(6): p. A1283-A1289.
    122. Zhang, Z., et al., Understanding the redox shuttle stability of 3, 5-di-tert-butyl-1, 2-dimethoxybenzene for overcharge protection of lithium-ion batteries. Journal of Power Sources, 2010. 195(15): p. 4957-4962.
    123. Weng, W., et al., Fused ring and linking groups effect on overcharge protection for lithium-ion batteries. Journal of Power Sources, 2011. 196(3): p. 1530-1536.
    124. Feng, J., et al., A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries. Electrochemistry communications, 2007. 9(1): p. 25-30.
    125. Moshurchak, L., et al., High-potential redox shuttle for use in lithium-ion batteries. Journal of The Electrochemical Society, 2009. 156(4): p. A309-A312.
    126. Zhang, L., et al., Novel redox shuttle additive for high-voltage cathode materials. Energy & Environmental Science, 2011. 4(8): p. 2858-2862.
    127. Chen, L., et al., Dimethoxydiphenylsilane (DDS) as overcharge protection additive for lithium-ion batteries. Journal of Power Sources, 2013. 244: p. 499-504.
    128. áDietz Rago, N.L., An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(20): p. 10710-10714.
    129. Huang, J., et al., 1, 4-Bis (trimethylsilyl)-2, 5-dimethoxybenzene: a novel redox shuttle additive for overcharge protection in lithium-ion batteries that doubles as a mechanistic chemical probe. Journal of Materials Chemistry A, 2015. 3(14): p. 7332-7337.
    130. Buhrmester, C., et al., The use of 2, 2, 6, 6-tetramethylpiperinyl-oxides and derivatives for redox shuttle additives in Li-ion cells. Journal of the Electrochemical Society, 2006. 153(10): p. A1800-A1804.
    131. Taggougui, M., et al., Application of a nitroxide radical as overcharge protection in rechargeable lithium batteries. Journal of Power Sources, 2007. 174(2): p. 643-647.
    132. Buhrmester, C., et al., Phenothiazine Molecules Possible Redox Shuttle Additives for Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2006. 153(2): p. A288-A294.
    133. Moshurchak, L., C. Buhrmester, and J. Dahn, Triphenylamines as a class of redox shuttle molecules for the overcharge protection of lithium-ion cells. Journal of the Electrochemical Society, 2008. 155(2): p. A129-A131.
    134. Li, S., et al., Diphenylamine: A safety electrolyte additive for reversible overcharge protection of 3.6 V-class lithium ion batteries. Journal of Power Sources, 2008. 184(2): p. 553-556.
    135. Chen, Z. and K. Amine, Bifunctional electrolyte additive for lithium-ion batteries. Electrochemistry communications, 2007. 9(4): p. 703-707.
    136. Chen, Y., et al., Charging a Li–O2 battery using a redox mediator. Nature chemistry, 2013. 5(6): p. 489-494.
    137. Xiang, H., et al., Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. Journal of Power Sources, 2007. 173(1): p. 562-564.
    138. Feng, J., et al., Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries. Electrochimica Acta, 2013. 114: p. 688-692.
    139. Feng, J., et al., Tri-(4-methoxythphenyl) phosphate: A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries. Electrochimica Acta, 2008. 53(28): p. 8265-8268.
    140. Zhou, D., et al., Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries. Journal of Power Sources, 2008. 184(2): p. 589-592.
    141. Nam, T.-H., et al., Diphenyloctyl phosphate and tris (2, 2, 2-trifluoroethyl) phosphite as flame-retardant additives for Li-ion cell electrolytes at elevated temperature. Journal of Power Sources, 2008. 180(1): p. 561-567.
    142. Jin, Z., et al., A Novel Phosphate-Based Flame Retardant and Film-Forming Electrolyte Additive for Lithium Ion Batteries. ECS Electrochemistry Letters, 2013. 2(7): p. A66-A68.
    143. Xia, L., Y. Xia, and Z. Liu, A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries. Journal of Power Sources, 2015. 278: p. 190-196.
    144. Kim, K., et al., Electrochemical and thermal properties of 2, 4, 6-tris (trifluoromethyl)-1, 3, 5-triazine as a flame retardant additive in Li-ion batteries. Electrochimica Acta, 2009. 54(8): p. 2259-2265.
    145. Wu, B., et al., An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries. Journal of Power Sources, 2013. 227: p. 106-110.
    146. Zhang, H., et al., Vinyl-tris-(methoxydiethoxy) silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries. Electrochemistry Communications, 2009. 11(3): p. 526-529.
    147. Zeng, Z., et al., Bis (2, 2, 2-trifluoroethyl) methylphosphonate: an novel flame-retardant additive for safe lithium-ion battery. Electrochimica Acta, 2014. 129: p. 300-304.
    148. Zhu, X., et al., Bis (2, 2, 2-Trifluoroethyl) Ethylphosphonate as Novel High-efficient Flame Retardant Additive for Safer Lithium-ion Battery. Electrochimica Acta, 2015. 165: p. 67-71.
    149. Belov, D.G. and D. Shieh, A study of tetrabromobisphenol A (TBBA) as a flame retardant additive for Li-ion battery electrolytes. Journal of Power Sources, 2014. 247: p. 865-875.
    150. Feng, J. and L. Lu, A novel bifunctional additive for safer lithium ion batteries. Journal of Power Sources, 2013. 243: p. 29-32.
    151. Hu, J., et al., A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries. Journal of Power Sources, 2012. 197: p. 297-300.
    152. Gao, D., et al., Ethylene ethyl phosphate as a multifunctional electrolyte additive for lithium-ion batteries. RSC Advances, 2015. 5(23): p. 17566-17571.
    153. Rauh, R. and S. Brummer, The effect of additives on lithium cycling in propylene carbonate. Electrochimica Acta, 1977. 22(1): p. 75-83.
    154. Frisch, M., et al., gaussian 03, Gaussian. Inc.: Wallingford, CT, 2004.
    155. Dennington, R., et al., GaussView. 2009, Version.
    156. 葉怡成, 類神經網路-模式應用與實作. 2009.
    157. Demuth, H. and M. Beale, Neural Network Toolbox: For Use with Matlab: Computation, Visualization, Programming: User's Guide, Version 4. 2000: The MathWorks.
    158. Clark, M., R.D. Cramer, and N. Van Opdenbosch, Validation of the general purpose Tripos 5.2 force field. Journal of Computational Chemistry, 1989. 10(8): p. 982-1012.
    159. Zhang, G. and C.B. Musgrave, Comparison of DFT methods for molecular orbital eigenvalue calculations. The Journal of Physical Chemistry A, 2007. 111(8): p. 1554-1561.
    160. Wardman, P., Reduction potentials of one‐electron couples involving free radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1989. 18(4): p. 1637-1755.

    無法下載圖示 校內:2023-07-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE