| 研究生: |
楊詩蔚 Yang, Shih-Wei |
|---|---|
| 論文名稱: |
微分再生核無網格適點法與無元素Galerkin法之發展及其在功能性材料板和中空圓柱殼之擬三維結構分析 Development of Differential Reproducing Kernel-Based Meshless Collocation and Element-Free Galerkin Methods for the Quasi-Three-Dimensional Analysis of Functionally Graded Material Plates and Hollow Circular Cylinders |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 無網格法 、再生核 、置點法 、內插函數 、無元素Galerkin法 、彈力 、功能性梯度材料 、板 、疊層板 、計算模型 、三維分析 、振動 、圓柱 |
| 外文關鍵詞: | meshless methods, reproducing kernel, collocation, interpolation, element-free Galerkin methods, elasticity, functionally graded materials, FGM, plates, laminates, computational modeling, 3D analysis, vibration, cylinders |
| 相關次數: | 點閱:136 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發展基於微分再生核(Differential Reproducing Kernel, DRK)適點法於彈性體問題中一維及二維之常微分及偏微分控制方程的求解。在傳統的再生核(Reproducing Kernel, RK)近似法中,再生核近似函數之導數的形狀函數須對再生核近似函數(Liu, Jun and Zhang, 1995) 直接微分以進行求取,尤其是對高階導數的微分計算相當耗時。相對於的直接微分處理,我們提出一組微分再生狀態於求解再生核近似函數之導數的形狀函數。根據本文中發展的無網格適點法,應用於分析一維的彈性桿問題、二維的勢能問題及彈性體的平面問題,並驗證其準確性及發現其收斂率。接著,使用DRK內插法發展無網格置點法於求解功能性梯度(Functionally Graded, FG)彈性梁及板承載側向力學載重平面問題之靜態分析,其中DRK內插法是由隨機分佈的節點建構而成。發展以DRK內插法為基礎之適點法求解齊次FG彈性梁及板的平面應力及應變問題。結果展示,基於DRK近似-及基於DRK內插-適點法,此二種真正的無網格方法確實皆具備較優良的準確度及較快的收斂率。
本文以Reissner混合變分理論(the Reissner Mixed Variational Theorem, RMVT)基礎,結合先前提出的DRK近似函數與無網格適點 (Meshless Collocation, MC) 法及無元素Galerkin (Element-free Galerkin, EFG)法,發展近似三維靜態及自由振動三維彈性力學問題分析,求解圍繞簡支撐、承受力學載重之多層複合材料及功能梯度材料(Functionally Graded Material, FGM)中空圓柱殼之物理問題。此三維彈性力學問題的強形式及弱形式在靜態問題中皆被使用,前者由物理問題配合相關邊界條件組成尤拉-拉格朗日方程式(Euler-Lagrange equations),後者為加權殘餘積分式,其差異均勻分佈於主變數量及其變異之中。使用DRK內插法來建構主變數,以滿足Kronecker Delta之性質,且與主變數相關的邊界及連續條件可以直接應用。採用強形式及弱形式結合DRK內插函數可獲得基於RMVT之無網格法及無元素Galerkin法的系統方程。其中,各獨立之功能性梯度材料層之材料性質沿該層之厚度座標方向以體積分數的冪級數律分佈組成,基於RMVT可求導出此三維動態問題之弱形式。
A differential reproducing kernel (DRK) approximation-based collocation method is developed for solving ordinary and partial differential equations governing the one- and two-dimensional problems of elastic bodies. In the conventional reproducing kernel (RK) approximation, the shape functions for the derivatives of RK approximants are determined by directly differentiating the RK approximants (Liu, Jun and Zhang, 1995), and this is very time-consuming, especially for the calculations of their higher-order derivatives. Contrary to the previous differentiation manipulation, we construct a set of differential reproducing conditions to determine the shape functions for the derivatives of RK approximants. A meshless collocation method based on the present DRK approximation is developed and applied to the analysis of one-dimensional problems of elastic bars, two-dimensional potential problems, and plane elasticity problems of elastic solids to validate its accuracy and find the rate of convergence. Subsequently, a meshless collocation method is developed for the static analysis of plane problems of functionally graded (FG) elastic beams and plates under transverse mechanical loads using the DRK interpolation, in which the DRK interpolant is constructed by the randomly-distributed nodes. A point collocation method based on this DRK interpolation is developed for the plane stress and strain problems of homogeneous and FG elastic beams and plates. It is shown that the present method, both the DRK approximation- and the DRK interpolation- based collocation method, is indeed a fully meshless approach with excellent accuracy and fast convergence rate.
In this dissertation, a meshless collocation (MC) and an element-free Galerkin (EFG) method in conjunction with an earlier proposed DRK interpolation are developed for the approximate three-dimensional (3D) static and free vibration analysis of the 3D elasticity problem, centering on simply supported, multilayered composite and functionally graded material (FGM) circular hollow cylinders under mechanical loads, derived on the basis of the Reissner mixed variational theorem (RMVT). Both the strong and weak formulations of this 3D elasticity problem are used in static problems, the former consists of the Euler-Lagrange equations of this problem and its associated boundary conditions, while the latter represents a weighted-residual integral in which the differentiation is equally distributed among the primary field variables and their variations. An earlier proposed DRK interpolation is used to construct the primary field variables where the Kronecker delta properties are satisfied, and the boundary and continuity conditions related to the primary variables themselves can be directly applied. The system equations of both the RMVT-based MC and EFG methods are obtained using these strong and weak formulations in combination with the DRK interpolation. Based on the RMVT, the weak formulation of this 3D dynamic problem is derived, in which the material properties of each individual FGM layer are assumed to obey the power-law distributions of the volume fractions of the constituents through the thickness coordinate of the layer.
Akhras, G.; Li, W.C. (2007): Three-Dimensional Static, Vibration, and Stability Analyses of Piezoelectric Composite Plates using a Finite Layer Method, Smart Materials and Structures, vol. 16, pp. 561-569.
Akhras, G.; Li, W.C. (2008): Three-Dimensional Thermal Buckling Analysis of Piezoelectric Composite Plates using the Finite Layer Method, Smart Materials and Structures, vol. 17, pp. 1-8.
Aluru, N.R. (2000): A Point Collocation Method based on Reproducing Kernel Approximations, International Journal for Numerical Methods in Engineering, vol. 47, pp. 1083-1121.
Atluri, S.N. (2004): The Meshless Local Petrov-Galerkin (MLPG) Method for Domain & Boundary Discretizations, Tech Science Press, 700 pages, Forsyth, GA.
Atluri, S.N.; Cho, J.Y.; Kim, H.G. (1999): Analysis of Thin Beams, using the Meshless Local Petrov-Galerkin Method, with Generalized Moving Least Squares Interpolations, Computational Mechanics, vol. 24, pp. 334-347.
Atluri, S.N.; Liu, H.T.; Han, Z.D. (2006a): Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method for Elasticity Problems, Computer Modeling in Engineering & Sciences, vol. 14, pp. 141-152.
Atluri, S.N.; Liu, H.T.; Han, Z.D. (2006b): Meshless Local Petrov-Galerkin (MLPG) Mixed Finite Difference Method for Solid Mechanics, Computer Modeling in Engineering & Sciences, vol. 15, pp. 1-16.
Atluri, S.N.; Shen, S. (2002): The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press, 429 pages, New York, USA.
Atluri, S.N.; Zhu, T. (1998): A New Meshless Local Petro-Galerkin (MLPG) Approach in Computational Mechanics, Computational Mechanics, vol. 22, pp. 117-127.
Batra, R.C.; Vidolis, S. (2002): Higher-Order Piezoelectric Plate Theory Derived from a Three-Dimensional Variational Principle, American Institute of Aeronautics and Astronautics Journal, vol. 40, pp. 91-104.
Behjat, B.; Manouchehr, S.; Mojtaba, S.; Ahad, A.; Mostafa, A. (2009): Static, Dynamic, and Free Vibration Analysis of Functionally Graded Piezoelectric Panels using Finite Element Method, Journal of Intelligent Material Systems and Structures, vol. 20, pp. 1635-1646.
Belinha, J.; Dinis, L.M.J.S. (2006): Analysis of Plates and Laminates using the Element-Free Galerkin Method, Computers & Structures, vol. 84, pp. 1547-1559.
Belinha, J.; Dinis, L.M.J.S. (2007): Nonlinear Analysis of Plates and Laminates using the Element-Free Galerkin Method, Composite Structures, vol. 78, pp. 337-350.
Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. (1996): Meshless Methods: An Overview and Recent Developments, Computer Methods in Applied Mechanics and Engineering, vol. 139, pp. 3-47.
Belytschko, T.; Lu, Y.Y.; Gu, L. (1994): Element-Free Galerkin Methods, International Journal for Numerical Methods in Engineering, vol. 37, pp. 229-256.
Bhattacharya, P.; Suhail, H.; Sinha, P.K. (1998): Finite Element Free Vibration Analysis of Smart Laminated Composite Beams and Plates, Journal of Intelligent Material Systems and Structures, vol. 9, pp. 20-28.
Brischetto, S.; Carrera, E. (2009): Refined 2D Models for the Analysis of Functionally Graded Piezoelectric Plates, Journal of Intelligent Material Systems and Structures, vol. 20, pp. 1783-1797.
Burton, W.S.; Noor, A.K. (1995): Assessment of Computational Models for Sandwich Panels and Shells, Computer Methods in Applied Mechanics and Engineering, vol. 124, pp. 125-151.
Carrera, E. (2000): Assessment of Mixed and Classical Theories on Global and Local Response of Multilayered Orthotropic Plates, Composite Structures, vol. 50, pp. 183-198.
Carrera, E. (2001): Developments, Ideas and Evaluations based upon the Reissner’s Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells, Applied Mechanics Reviews, vol. 54, pp. 301-329.
Carrera, E. (2003a): Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation with Numerical Assessment and Benchmarks, Archives of Computational Methods in Engineering, vol. 10, pp. 215-296.
Carrera, E. (2003b): Historical Review of Zig-Zag Theories for Multilayered Plates and Shells, Applied Mechanics Reviews, vol. 56, pp. 287-308.
Carrera, E. (2004): Assessment of Theories for Free Vibration Analysis of Homogeneous and Multilayered Plates, Shock and Vibration, vol. 11, pp. 261-270.
Carrera, E., Brischetto, S., Cinefra, M., Soave, M. (2010): Refined and Advanced Models for Multilayered Plates and Shells Embedding Functionally Graded Material Layers, Mechanics of Advanced Materials and Structures, vol. 17, pp. 603-621.
Carrera, E.; Brischetto, M.; Cinefra, M.; Soave, M. (2011): Effects of Thickness Stretching in Functionally Graded Plates and Shells, Composites Part B: Engineering, vol. 42, pp. 123-133.
Carrera, E.; Brischetto, S. (2009): A Survey with Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates, Applied Mechanics Reviews, vol. 62, pp. 1-17.
Carrera, E.; Brischetto, S.; Cinefra, M.; Soave, M. (2010): Refined and Advanced Models for Multilayered Plates and Shells Embedding Functionally Graded Material Layers, Mechanics of Advanced Materials and Structures, vol. 17, pp. 603-621.
Carrera, E.; Brischetto, S.; Robaldo A. (2008): Variable Kinematic Model for the Analysis of Functionally Graded Material Plates, American Institute of Aeronautics and Astronautics Journal, vol. 46, pp. 194-203.
Carrera, E.; Ciuffreda, A. (2005): Bending of Composites and Sandwich Plates Subjected to Localized Lateral Loading: A Comparison of Various Theories. Composite Structures, vol. 68, pp. 185-202.
Carrera, E.; Demasi, L.; Manganello, M. (2002): Assessment of Plate Elements on Bending and Vibrations of Composite Structures, Mechanics of Advanced Materials and Structures, vol. 9, pp. 333-357.
Carrera, E.; Petrolo, M. (2010): Guidelines and Recommendations to Construct Theories for Metallic and Composite Plates, American Institute of Aeronautics and Astronautics Journal, vol. 48, pp. 2852-2866.
Cinefra, M.; Belouettar, S.; Soave, M.; Carrera E. (2010): Variable Kinematic Models Applied to Free-vibration Analysis of Functionally Graded Material Shells, European Journal of Mechanics - A/Solids, vol. 29, pp. 1078-1087.
Chen, J.S.; Pan, C.; Wu, C.T. (1997): Large Deformation Analysis of Rubber based on a Reproducing Kernel Particle Method, Computational Mechanics, vol. 19, pp. 211-227.
Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K. (1996): Reproducing Kernel Particle Methods for Large Deformation Analysis of Non-linear Structures, Computer Methods in Applied Mechanics and Engineering, vol. 139, pp. 195-227.
Chen, S.M.; Wu, C.P.; Wang, Y.M. (2010): A Hermite DRK Interpolation-based Collocation Method for the Analysis of Bernoulli-Euler Beams and Kirchhoff-Love Plates, Computational Mechanics, vol. 47, pp. 425-453.
Chen, J.S.; Yoon, S.; Wang, H.P.; Liu, W.K. (2000): Improved Reproducing Kernel Particle Method for nearly Incompressible Finite Elasticity, Computer Methods in Applied Mechanics and Engineering, vol. 181, pp. 117-145.
Cheung, Y.K.; Jiang, C.P. (2001): Finite Layer Method in Analyses of Piezoelectric Composite Laminates, Computer Methods in Applied Mechanics and Engineering, vol. 191, pp. 879-901.
Ching, H.K.; Yen, S.C. (2005): Meshless Local Petro-Galerkin Analysis for 2D Functionally Graded Elastic Solids under Mechanical and Thermal Loads, Composites Part B: Engineering, vol. 36, pp. 223-240.
Dai, K.Y.; Liu, G.R.; Han, X.; Lim, K.M. (2005): Thermomechanical Analysis of Functionally Graded Material (FGM) Plates using Element-free Galerkin Method, Computers & Structures, vol. 83, pp. 1487-1502.
Demasi, L. (2008): Hierarchy Plate Theories for Thick and Thin Composite Plates: The Generalized Unified Formulation, Composite Structures, vol. 84, pp. 256-270.
Demasi, L. (2009a): Mixed Plate Theories based on the Generalized Unified Formulation. Part I: Governing Equations, Composite Structures, vol. 87, pp.1-11.
Demasi, L. (2009b): Mixed Plate Theories based on the Generalized Unified Formulation. Part II: Layerwise Theories, Composite Structures, vol. 87, pp. 12-22.
Demasi, L. (2009c): Mixed Plate Theories based on the Generalized Unified Formulation. Part III: Advanced Mixed High Order Shear Deformation Theories, Composite Structures, vol. 87, pp. 183-194.
Demasi, L. (2009d): Mixed Plate Theories based on the Generalized Unified Formulation. Part IV: Zig-Zag Theories, Composite Structures, vol. 87, pp. 195-205.
Demasi, L. (2009e): Mixed Plate Theories based on the Generalized Unified Formulation. Part V: Results, Composite Structures, vol. 88, pp. 1-16.
Ferreira, A.J.M.; Batra, R.C.; Roque, C.M.C.; Qian, L.F.; Martins, P.A.L.S. (2005): Static Analysis of Functionally Graded Plates using Third-Order Shear Deformation Theory and a Meshless Method, Composite Structures, vol. 69, pp.449-457.
Ferreira, A.J.M.; Batra, R.C.; Roque, C.M.C.; Qian, L.F.; Jorge, R.M.N. (2006): Natural Frequencies of Functionally Graded Plates by a Meshless Method, Composite Structures, vol. 75, pp. 593-600.
Ferreira, A.J.M.; Fasshauer, G.E. (2007): Analysis of Natural Frequencies of Composite Plates by an RBF-Pseudospectral Method, Composite Structures, vol. 79, pp. 202-210.
Ferreira, A.J.M.; Roque, C.M.C.; Jorge, R.M.N. (2007): Natural Frequencies of FSDT Cross-Ply Composite Shells by Multiquadrics, Composite Structures, vol. 77, pp. 296-305.
Ferreira, A.J.M.; Roque, C.M.C.; Jorge, R.M.N.; Fasshauer, G.E.; Batra, R.C. (2007): Analysis of Functionally Graded Plates by a Robust Meshless Method. Mechanics of Advanced Materials and Structures, vol. 14, pp. 577-587.
Ferreira, A.J.M.; Roque, C.M.C.; Martins, P.A.L.S. (2004): Radial Basis Functions and Higher-Order Shear Deformation Theories in the Analysis of Laminated Composite Beams and Plates, Composite Structures, vol. 66, pp. 287-293.
Ferreira, A.J.M.; Roque, C.M.C.; Martins, P.A.L.S. (2003): Analysis of Composite Plates using Higher-Order Shear Deformation Theory and a Finite Point Formulation based on the Multiquadric Radial Basis Function, Composites Part B: Engineering, vol. 34, pp. 627-636.
Gilhooley, D.F.; Batra, R.C.; Xiao, J.R.; McCarthy, M.A.; Gillespie, Jr. J.W. (2007): Analysis of Thick Functionally Graded Plates by using Higher-Order Shear and Normal Deformable Plate Theory and MLPG Method with Radial Basis Functions, Composite Structures, vol. 80, pp. 539-552.
Gopinathan, S.V.; Varadan, V.V.; Varadan, V.K. (2000): A Review and Critique of Theories for Piezoelectric Laminates, Smart Materials and Structures, vol. 9, pp. 24-48.
Han, Z.D.; Atluri, S.N. (2004a): Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving 3D Problems in Elasto-Statics, Computer Modeling in Engineering & Sciences, vol. 6, pp. 169-188.
Han, Z.D.; Atluri, S.N. (2004b): Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving 3D Problems in Elasto-Dynamics, Computers, Materials, & Continua, vol. 1, pp. 129-140.
Han, Z.D.; Rajendran, A.M., Atluri, S.N. (2005): Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformation and Rotation, Computer Modeling in Engineering & Sciences, vol. 10, pp. 1-12.
Hill, R. (1965): A Self-Consistent Mechanics of Composite Materials, J. Mech. Phys. Solids, vol. 13, pp. 213-222.
Jin, X.; Li, G.; Aluru, N.R. (2005): New Approximations and Collocation Schemes in the Finite Cloud Method, Computers & Structures, vol. 83, pp. 1366-1385.
Kang, J.H.; Leissa, A.W. (2004): Three-Dimensional Vibration Analysis of Thick, Complete Conical Shells, Journal of Applied Mechanics, vol. 4, pp. 502-507.
Kang, J.H.; Leissa, A.W. (2005): Free Vibrations of Thick, Complete Conical Shells of Revolution from a Three-Dimensional Theory, Journal of Applied Mechanics, vol. 5, pp.797-800.
Kim, D.W.; Kim, Y. (2003): Point Collocation Methods using the Fast Moving Least-Square Reproducing Kernel Approximation, International Journal for Numerical Methods in Engineering, vol. 56, pp. 1445-1464.
Lancaster, P.; Salkauakas, K. (1981): Surfaces Generated by Moving Least Squares Methods, Mathematics of Computation, vol. 37, pp. 141-158.
Lee, C.; Kim, D.W.; Park, S.H.; Kim, H.K.; Im, C.H.; Jung, H.K. (2008): Point Collocation Mesh-Free using FMLSRKM for Solving Axisymmetric Laplace Equation, IEEE Transactions on Magnetics, vol. 44, pp. 1234-1237.
Leetsch, R.; Wallmersperger, T.; , B. (2009): Thermomechanical Modeling of Functionally Graded Plates, Journal of Intelligent Material Systems and Structures, vol. 20, pp. 1799-1813.
Li, Q.; Iu, V.P.; Kou, K.P. (2008): Three-Dimensional Vibration Analysis of Functionally Graded Material Sandwich Plates, Journal of Sound and Vibration, vol. 311, pp. 498-515.
Li, S.; Liu, W.K. (1996): Moving Least-Square Reproducing Kernel Method (II) Fourier Analysis, Computer Methods in Applied Mechanics and Engineering. vol.139, pp. 159-193.
Li, S.; Liu, W.K. (1998): Synchronized Reproducing Kernel Interpolant via Multiple Wavelet Expansion, Computational Mechanics, vol. 21, pp. 28-47.
Li, S.; Liu, W.K. (1999a): Reproducing Kernel Hierarchical Partition of Unity, Part I_Formulation and Theory, International Journal for Numerical Methods in Engineering, vol. 45, pp. 251-288.
Li, S.; Liu, W.K. (1999b): Reproducing Kernel Hierarchical Partition of Unity, Part II_Applications, International Journal for Numerical Methods in Engineering, vol. 45, pp. 289-317.
Li, S.; Liu, W.K. (2002): Meshfree and Particle Methods and their Applications, Applied Mechanics Reviews, vol. 55, pp. 1-34.
Li, S.; Liu, W.K. (2004): Meshfree Particle Methods, Berlin: Springer.
Libersky, L.D.; Petschek, A.G.; Carney, T.C.; Hipp, J.R.; Allahdadi, F.A. (1993): High Strain Lagrangian Hydrodynamics_a Three-Dimensional SPH Code for Dynamic Material Response, Journal of Computional Physics, vol. 109, pp. 67-75.
Liew, K.M.; Ng, T.Y.; Wu, Y.C. (2002): Meshfree Method for Large Deformation Analysis-a Reproducing Kernel Particle Approach, Engineering Structures, vol. 24, pp. 543-551.
Liew, K.M.; Wang, J.; Ng, T.Y.; Tan, M.J. (2004): Free Vibration and Buckling Analyses of Shear-Deformable Plates based on FSDT Meshfree Method, Journal of Sound and Vibration, vol. 276, pp. 997-1017.
Liew, K.M.; Zhang, J.Z.; Li, C.; Meguid, S.A. (2005): Three-Dimensional Analysis of the Coupled Thermo-Piezoelectro-Mechanical Behavior of Multilayered Plates using the Differential Quadrature Technique, International Journal of Solids and Structures, vol. 42, pp. 4239-4257.
Liszka, T.J.; Duarte, C.A.M.; Tworzydlo, W.W. (1996): hp-Meshless Cloud Method, Computer Methods in Applied Mechanics and Engineering, vol. 139, pp. 263-288.
Liu, G.R.; Gu, Y.T. (2001): A Point Interpolation Method for Two-Dimensional Solids, International Journal for Numerical Methods in Engineering, vol. 50, pp. 937-951.
Liu, G.R. (2003): Meshfree Methods: Moving beyond the Finite Element Method, CRC Press, 691 pages, New York, USA.
Liu, G.R.; Gu, Y.T. (2005): An Introduction to Meshfree Methods and Their Programming, Springer, The Netherlands.
Liu, G.R.; Gu, Y.T. (2005): Meshfree Methods Moving beyond the Finite Element Method, New York: CRC Press.
Liu, W.K.; Chen, Y.; Jun, S.; Chen, J.S.; Belytschko, T.; Pan, C.; Uras, R.A.; Chang, C.T. (1996): Overview and Applications of the Reproducing Kernel Particle Methods, Archives of Computational Methods in Engineering, vol. 3, pp. 3-80.
Liu, W.K.; Chen, Y.; Uras, R.A.; Chang, C.T. (1996): Generalized Multiple Scale Reproducing Kernel Particle Methods, Computer Methods in Applied Mechanics and Engineering, vol. 139, pp.91-157.
Liu, W.K.; Li, S.; Belytschko, T. (1997): Moving Least-Square Reproducing Kernel Methods (I) Methodology and Convergence, Computer Methods in Applied Mechanics and Engineering, vol. 143, pp. 113-154.
Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T. (1995): Reproducing Kernel Particle Methods for Structural Dynamics, International Journal for Numerical Methods in Engineering, vol. 38, pp. 1655-1679.
Liu, W.K.; Jun, S.; Zhang, Y.F. (1995): Reproducing Kernel Particle Methods, International Journal for Numerical Methods in Engineering, vol. 20, pp. 1081-1106.
Lu, Y.Y.; Belytschko, T.; Gu, L. (1994): A New Implementation of the Element Free Galerkin Method, Computer Methods in Applied Mechanics and Engineering, vol. 113, pp. 397-414.
Lucy, L. (1977): A Numerical Approach to testing the Fission Hypothesis, Astrophysics Journal, vol. 82, pp. 1013-1024.
Mindlin, R.D. (1951): Influence of Rotatory Inertia and Shear in Flexural Motion of Isotropic Elastic Plates, Journal of Applied Mechanics, vol. 18, pp. 1031-1036.
Monaghan, J.J. (1988): An Introduction to SPH. Computational Physics Communications, vol. 48, pp. 89-96.
Mori, T.; Tanaka, K. (1973): Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta Materialia, vol. 21, pp. 571-574.
Nguyen, V.P.; Rabczuk, T.; Bordas, S.; Duflot, M. (2008): Meshless Methods: A Review and Computer Implementation Aspects, Mathematics and Computers in Simulation, vol. 79, pp. 763-813.
Noor, A.K.; Burton, W.S. (1990a): Assessment of Computational Models for Multilayered Anisotropic Plates, Composite Structures, vol. 14, pp. 233-265.
Noor, A.K.; Burton, W.S. (1990b): Assessment of Computational Models for Multilayered Composite Shells, Applied Mechanics Reviews, vol. 43, pp. 67-97.
Noor, A.K.; Burton, W.S.; Peters, J.M. (1991): Assessment of Computational Models for Multilayered Composite Cylinders, International Journal of Solids and Structures, vol. 27, pp. 1269-1286.
, E.; Perazzo, F.; Miquel, J. (2001) A Finite Point Method for Elasticity Problems, Computers & Structures, vol. 79, pp. 2151-2163.
Pagano, N.J. (1969): Exact Solutions for Composite Laminates in Cylindrical Bending, Journal of Composite Materials, vol. 3, pp. 398-411.
Pan, E. (2003): Exact Solution for Functionally Graded Anisotropic Elastic Composite Laminates, Journal of Composite Materials, vol. 37, pp. 1903-1920.
Qatu, M. (2002a): Recent Research Advances in the Dynamic Behavior of Shells:1989-2000. Part 1: Laminated Composite Shells, Applied Mechanics Reviews, vol. 55, pp. 325-349.
Qatu, M. (2002b): Recent Research Advances in the Dynamic Behavior of Shells:1989-2000. Part 2: Homogeneous Shells, Applied Mechanics Reviews, vol. 55, pp. 415-434.
Qatu, M.; Sullivan, R.W.; Wang, W. (2010): Recent Research Advances on the Dynamic Analysis of Composite Shells: 2000_2009, Composite Structures, vol. 93, pp. 14-31
Qian, L.F.; Batra, R.C.; Chen, L.M. (2004): Analysis of Cylindrical Bending Thermoelastic Deformations of Functionally Graded Plates by a Meshless Local Petro-Galerkin Method, Computational Mechanics, vol. 33, pp. 263-273.
Ramirez, F.; Heyliger, P.R.; Pan, E. (2006a): Static Analysis of Functionally Graded Elastic Anisotropic Plates using a Discrete Layer Approach, Composites Part B: Engineering, vol. 37, pp. 10-20.
Ramirez, F.; Heyliger, P.R.; Pan, E. (2006b): Discrete Layer Solution to Free Vibrations of Functionally Graded Magneto-Electro-Elastic Plates, Mechanics of Advanced Materials and Structures, vol. 13, pp. 249-266.
Reddy, J.N. (1984): A Simple Higher-Order Theory for Laminated Composite Plates, Journal of Applied Mechanics, vol. 51, pp. 745-752.
Roque, C.M.C.; Ferreira, A.J.M.; Jorge, R.M.N. (2005): Modeling of Composite and Sandwich Plates by a Trigonometric Layerwise Deformation Theory and Radial Basis Functions, Composites Part B: Engineering, vol. 36, pp. 559-572.
Roque, C.M.C.; Ferreira, A.J.M.; Jorge, R.M.N. (2007): A Radial Basis Function Approach for the Free Vibration Analysis of Functionally Graded Plates using a Refined Theory, Journal of Sound and Vibration, vol. 300, pp. 1048-1070.
Roque, C.M.C.; Ferreira, A.J.M.; Neves, A.M.A.; Fasshauer, G.E.; Soares, C.M.M.; Jorge, R.M.N. (2010): Dynamic Analysis of Functionally Graded Plates and Shells by Radial Basis Functions, Mechanics of Advanced Materials and Structures, vol. 17, pp. 636-652.
Santos, H.; Mota, Soares, C.M.; Mota, Soares, C.A.; Reddy, J.N. (2009): A Semi-Analytical Finite Element Model for the Analysis of Cylindrical Shells Made of Functionally Graded Materials, Composite Structures, vol. 91, pp. 427-432.
Saravanos, D.A.; Heyliger, P.R. (1999): Mechanics and Computational Models for Laminated Piezoelectric Beams, Plates, and Shells, Applied Mechanics Reviews, vol. 52, pp. 305-320.
Sheng, H.Y.; Ye, J.Q. (2002): A State Space Finite Element for Laminated Composite Plates, Computer Methods in Applied Mechanics and Engineering, vol. 191, pp. 4259-4276.
Sheng, H.Y.; Ye, J.Q. (2003): A Three-Dimensional State Space Finite Element Solution for Laminated Composite Cylindrical Shells, Computer Methods in Applied Mechanics and Engineering, vol. 192, pp. 2441-2459.
Sladek, J.; Sladek, V.; Zhang, C.H.; Krivacek, J.; Wen, P.H. (2006): Analysis of Orthotropic Thick Plates by Meshless Local Petro-Galerkin (MLPG) Method, International Journal for Numerical Methods in Engineering, vol. 13, pp. 2830-2850.
Sladek, J.; Sladek, V.; Stanak, P.; Pan, E. (2010): The MLPG for the Bending of Electroelastic plates, Computer Modeling in Engineering & Sciences, vol. 3, pp. 267-297.
Sladek, J.; Sladek, V.; Zhang, Ch. (2005): Stress Analysis in Anisotropic Functionally Graded Materials by the MLPG Method, Engineering Analysis with Boundary Elements, vol. 29, pp. 597-609.
Sladek, J.; Sladek, V.; Solek P. (2009): Elastic Analysis in 3D Anisotropic Functionally Graded Solids by the MLPG, Computer Modeling in Engineering & Sciences, vol. 43, pp. 223-251.
Sladek, J.; Sladek, V.; Hellmich, Ch., Eberhardsteiner J. (2007): Analysis of Thick Functionally Graded Plates by Local Integral Equation Method, Communications in Numerical Methods in Engineering, vol. 23, pp. 733-54.
Sladek, J.; Sladek, V.; Solek, P.; Wen, P.H. (2008a): Thermal Bending of Reissner-Mindlin Plates by the MLPG, Computer Modeling in Engineering & Sciences, vol. 28, pp. 57-76.
Sladek, J.; Sladek, V.; Solek, P.; Wen, P.H.; Atluri, S.N. (2008b): Thermal Analysis of Reissner-Mindlin Shallow Shells with FGM Properties by the MLPG, Computer Modeling in Engineering & Sciences, vol. 30, pp. 77-97.
Sladek, J.; Sladek, V.; Zhang, Ch.; Solek P. (2008c): Static and Dynamic Analysis of Shallow Shells with Functionally Graded and Orthotropic Material Properties, Mechanics of Advanced Materials and Structures, vol. 15, pp. 142-156.
So, J.; Leissa, A.W. (1997): Free Vibrations of Thick Hollow Circular Cylinders from Three-Dimensional Analysis, Journal of Vibration and Acoustics, vol. 119, pp. 89-95.
Timoshenko, S.P.; Goodier, J.N. (1970): Theory of Elasticity. McGraw-Hill, New York.
Tutuncu, N.; Ozturk, M. (2001): Exact Solutions for Stresses in Functionally Graded Pressure Vessels, Composites Part B: Engineering, vol. 32, pp. 683-686.
Varadan, T.K.; Bhaskar, K. (1991): Bending of Laminated Orthotropic Cylindrical Shells_An Elasticity Approach, Composite Structures, vol. 17, pp. 141-156.
Wang, Y.M.; Chen, S.M.; Wu, C.P. (2010): A Meshless Collocation Method based on the Differential Reproducing Kernel Interpolation, Computational Mechanics, vol.45, pp. 585-606.
Wu, C.P.; Chen, S.J.; Chiu, K.H. (2010): Three-Dimensional Static Behavior of Functionally Graded Magneto-Electro-Elastic Plates using the Modified Pagano Method, Mechanics Research Communications, vol. 37, pp. 54-60.
Wu, C.P.; Chiu, K.H.; Wang, Y.M. (2008a): A Differential Reproducing Kernel Particle Method for the Analysis of Multilayered Elastic and Piezoelectric Plates, Computer Modeling in Engineering & Sciences, vol. 27, pp. 163-186.
Wu, C.P.; Chiu, K.H.; Wang, Y.M. (2008b): A Meshfree DRK-based Collocation Method for the Coupled Analysis of Functionally Graded Magneto-Electro-Elastic Shells and Plates, Computer Modeling in Engineering & Sciences, vol. 35, pp. 181-214.
Wu, C.P.; Chiu, K.H.; Wang, Y.M. (2008c): A Review on the Three-Dimensional Analytical Approaches of Multilayered and Functionally Graded Piezoelectric Plates and Shells, Computers, Materials & Continua, vol. 8, pp. 93-132.
Wu, C.P.; Chen, S.J.; Chiu, K.H. (2010): Three-Dimensional Static Behavior of Functionally Graded Magneto-Electro-Elastic Plates using the Modified Pagano Method, Mechanics Research Communications, vol. 37, pp. 54-60.
Wu, C.P.; Chiu, K.H.; Wang, Y.M. (2011): RMVT-based Meshless Collocation and Element-Free Galerkin Methods for the Quasi-3D Analysis of Multilayered Composite and FGM Plates, Composite Structures, vol. 93, pp. 923-943.
Wu, C.P.; Chiu, K.H. (2011): RMVT-based Meshless Collocation and Element-Free Galerkin Methods for the Quasi-3D Free Vibration Analysis of Multilayered Composite and FGM Plates, Composite Structures, vol. 93, pp. 1433-1448.
Wu, C.P.; Li, H.Y. (2010a): The RMVT- and PVD-based Finite Layer Methods for the Three-dimensional Analysis of Multilayered Composite and FGM Plates, Composite Structures, vol. 92, pp. 2476-2496.
Wu, C.P.; Lee, H.Y. (2010b): RMVT- and PVD-based Finite Layer Methods for the Quasi-3D Free Vibration Analysis of Multilayered Composite and FGM Plates, Computers, Materials & Continua, vol. 19, pp. 155-198.
Wu, C.P.; Liu, C.C. (1994): A Local High-Order Deformable Theory for Thick Laminated Cylindrical Shells, Composite Structures, vol. 29, pp. 69-87.
Wu CP, Lu YC. (2009): A Modified Pagano Method for the 3D Dynamic Responses of Functionally Graded Magneto-Electro-Elastic Plates, Composite Structures, vol. 90, pp. 363-372.
Wu, C.P.; Wang, J.S.; Wang, Y.M. (2009): A DRK Interpolation-based Collocation Method for the Analysis of Functionally Graded Piezoelectric Hollow Cylinders under Electro-Mechanical Loads, Computer Modeling in Engineering & Sciences, vol. 52, pp. 1-37.
Wu, C.P.; Syu, Y.S. (2007): Exact Solutions of Functionally Graded Piezoelectric Shells under Cylindrical Bending, International Journal of Solids and Structures, vol. 44, pp. 6450-6472.
Wu, C.-P., Yang, S.-W. (2011a): Meshless Methods for the Quasi-3D Analysis of Functionally Graded Elastic Cylinders, the 19th Annual International Conference on Composites, Nano or Metals Engineering (ICCE-19), Shanghai, China, July 24-30, 2011. World Journal of Engineering (WJOE).
Wu, C.-P, Yang, S.-W. (2011b): RMVT-based Meshless Collocation and Element-Free Galerkin Methods for the Approximate 3D analysis of Multilayered Composite and FGM Circular Hollow Cylinders, Composites: Part B, vol. 42, no. 6, September 2011, pp. 1683-1700.
Wu, C.-P, Yang, S.-W., Wang, Y.-M. and Hu, H.-T. (2011c): A Meshless Collocation Method for the Plane Problems of Functionally Graded Material Beams and Plates using the DRK Interpolation, Mechanics Research Communications, vol. 38, no. 6, October 2011, pp. 471-476.
Wu, C.-P., Yang, S.-W. (2011d): A Semi-Analytical Element-Free Galerkin Method for the 3D Free Vibration Analysis of Multilayered FGM Circular Hollow Cylinders, Journal of Intelligent Material Systems and Structures, vol. 22, no. 17, November 2011, pp. 1993-2007.
Xiang, S.; Wang, K.M.; Ai, Y.T.; She, Y.D.; Shi, H. (2009): Analysis of Isotropic, Sandwich and Laminated Plates by a Meshless Method and various Shear Deformation Theories, Composite Structures, vol. 91, pp. 31-37.
Xiao, J.R.; Gilhooley, D.F.; Batra. R.C.; Gillespie, Jr. J.W., McCarthy MA. (2008): Analysis of Thick Composite Laminates using a Higher-Order Shear and Normal Deformable Plate Theory (HOSNDPT) and a Meshless Method, Composites Part B: Engineering, vol. 39, pp. 414-427.
Yang, J.; Shen, H.S. (2003): Nonlinear Bending Analysis of Shear Deformable Functionally Graded Plates subjected to Thermo-Mechanical Loads under various Boundary Conditions, Composites Part B: Engineering, vol. 34, pp. 103-115.
Yang, S.W.; Wang, Y.M.; Wu, C.P.; Hu, H.T. (2010): A Meshless Collocation Method based on the Differential Reproducing Kernel Approximation, Computer Modeling in Engineering & Sciences, vol. 60, pp. 1-39.
Zhang, X.; Liu, X.H.; Song, K.Z.; Lu, M.W. (2001): Least-Squares Collocation Meshless Method, International Journal for Numerical Methods in Engineering, vol. 51, pp. 1089-1100.
Zhang, Z.; Feng, C.; Liew, K.M. (2006): Three-Dimensional Vibration Analysis of Multilayered Piezoelectric Composite Plates, International Journal of Engineering Science, vol. 44, pp. 397-408.
Zhao, X.; Liew, K.M.; Ng, T.Y. (2003): Vibration Analysis of Laminated Composite Cylindrical Panels via a Meshfree Approach, International Journal of Solids and Structures, vol. 40, pp. 161-180.
Zhao, X.; Ng, T.Y.; Liew, K.M. (2004): Free Vibration of Two-Side Simply-Supported Laminated Cylindrical Panels via the Mesh-Free kp-Ritz Method, International Journal of Mechanical Sciences, vol. 46, pp. 123-142.
Zhou, J.X.; Zhang, H.Y.; Zhang, L. (2005): Reproducing Kernel Particle Method for Free and Forced Vibration Analysis, Journal of Sound and Vibration, vol. 279, pp. 389-402.