簡易檢索 / 詳目顯示

研究生: 李榮宏
Lee, Jung-Hung
論文名稱: 疏水修飾聚乙烯胺的合成與性質研究
Synthesis and Characterization of Hydrophobically Modified Poly(vinyl amine)
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 88
中文關鍵詞: 縮水甘油醚開環反應疏水修飾聚乙烯胺螢光分析粒徑分析
外文關鍵詞: Hydrophobically modified poly(vinylamine), glycidyl ether, ring opening reaction, fluorescence, particle size
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗欲設計合成以十二到十四烷基縮水甘油醚製備疏水修飾聚乙烯胺。首先將N-乙烯甲醯胺單體(N-vinylformamide)利用傳統自由基聚合法(free radical polymerization) 聚合成聚乙烯甲醯胺高分子,再加入氫氧化鉀使聚乙烯甲醯胺高分子水解為聚乙烯胺。將聚乙烯胺在甲醇或甲醇/水共溶劑為反應溶劑,並調整不同進料莫爾比例得到不同取代度(疏水基占整體的比例)疏水修飾聚乙烯胺。再將疏水修飾聚乙烯胺做螢光光譜分析,以及粒徑分析。
    在相同取代度下,疏水修飾聚乙烯胺濃度越高,由螢光光譜得到的[I1/ I3]py越低,代表溶液疏水性越高。同時,由動態光散射得到得粒徑結果顯示粒徑越來越小,說明疏水修飾聚乙烯胺因為疏水性越來越大,而使得高分子鏈段疏水區域逐漸聚集,導致粒徑隨濃度變高而降低。當疏水修飾聚乙烯胺濃度不變,pH值越高時,得到的[I1/ I3]py越低,代表溶液疏水性越高。粒徑結果越低,顯示疏水修飾聚乙烯胺逐漸由舒展的直鏈狀高分子,轉變為球狀高分子。
    當取代度越高時,在相同濃度下 [I1/ I3]py越來越小,反映溶液的疏水性越高,證實疏水修飾聚乙烯胺的疏水基比例越大。當取代度越高時,在相同濃度下粒徑越來越小,也反映溶液的疏水性越高,高分子鏈段疏水區域逐漸聚集致使粒徑逐漸下降。在取代度越高的疏水修飾聚乙烯胺,粒徑隨濃度增加而下降的速率越快。在疏水修飾聚乙烯胺的取代度變大時,[I1/ I3]py下降速率和粒徑下降速率漸增。代表濃度造成疏水性和粒徑影響越大。

    Hydrophobically modified poly(vinylamine) was successfully synthesis by ring-opening reaction of epoxides from dodecyl to tetradecyl glycidyl ether and poly(vinylamine). Poly(vinylamine) were hydrolyzed from poly(N-vinylformamide) with 1 M Potassium hydroxide solution at 70˚C for 24 hours, and purification of Poly(vinylamine) were by dialysis. Poly(N-vinylformamide) were synthesized via free radical polymerization of N-vinylformamide monomer with AIBN in toluene at 65˚C for 12 hours. , and purification of Poly(N-vinylformamide) were by reprecipitation using acetone. The ratio of hydrophobic and hydrophilic group of hydrophobically modified poly(vinylamine), in other words, degree of substitution, which means the percentage of hydrophobic groups to entire hydrophobically modified poly(vinylamine), was determined by 1H NMR.

    摘要 II Extended Abstract III 致謝 X 總目錄 XI 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 第二章 文獻回顧 3 2-1界面活性劑系統 3 2-2 高分子界面活性劑 5 2-3合成高分子界面活性劑方法 6 2-3-1 縮合聚合 6 2-3-2 離子聚合 7 2-3-3活性自由基聚合 12 2-3-4開環聚合 14 2-4聚乙烯胺性質介紹 16 2-4-1疏水修飾聚乙烯胺合成研究 18 第三章 實驗製備方法與原理 21 3-1 實驗藥品與儀器設備 21 3-1-1實驗藥品 21 3-1-2 實驗器材 22 3-1-3 分析儀器 22 3-2 實驗製備方法 26 3-2-1 NVF 單體純化 26 3-2-2 AIBN再結晶純化 26 3-2-3 合成與純化 Poly(vinylformamide) 27 3-2-4 製備 Poly(vinylamine) 28 3-2-5 合成與純化疏水修飾聚乙烯胺鹽酸鹽 28 3-2-7 製備螢光探針法樣品 29 3-2-8 製備動態光散射樣品 30 第四章 結果與討論 31 4-1 聚(N-乙烯甲醯胺)及聚乙烯胺之鑑定 31 4-2疏水修飾聚乙烯鹽酸鹽之鑑定 33 4-3利用螢光光譜儀分析疏水修飾聚乙烯鹽酸鹽在不同濃度的疏水性變化 42 4-4利用動態光散射儀分析疏水修飾聚乙烯鹽酸鹽在不同濃度的粒徑變化 43 4-5疏水修飾聚乙烯鹽酸鹽在不同濃度的疏水性和粒徑變化 63 4-6利用螢光光譜儀分析疏水修飾聚乙烯鹽酸鹽在不同酸鹼值的疏水性變化 63 4-7利用動態光散射儀分析疏水修飾聚乙烯鹽酸鹽在不同酸鹼值的粒徑變化 64 4-8疏水修飾聚乙烯鹽酸鹽在不同酸鹼度的疏水性和粒徑變化 83 第五章 結論 84 參考文獻 85

    1. Geffroy, C.; Labeau, M. P.; Wong, K.; Cabane, B.; Cohen Stuart, M. A., Kinetics of adsorption of polyvinylamine onto cellulose. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 2000, 172 (1), 47-56.
    2. Piculell, I.; Thuresson, K.; Lindman, B., Mixed solutions of surfactant and hydrophobically modified polymer. POLYM ADVAN TECHNOL 2001, 12 (1-2), 44-69.
    3. Eeckman, F.; Moës, A. J.; Amighi, K., Poly(N-isopropylacrylamide) copolymers for constant temperature controlled drug delivery. INT J PHARMACEUT 2004, 273 (1), 109-119.
    4. Lewis, A. L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. COLLOIDS AND SURFACES B-BIOINTERFACES 2000, 18 (3), 261-275.
    5. Cochin, D.; Laschewsky, A.; Nallet, F., Emulsion Polymerization of Styrene Using Conventional, Polymerizable, and Polymeric Surfactants. A Comparative Study. MACROMOLECULES 1997, 30 (8), 2278-2287.
    6. Riess, G., Block copolymers as polymeric surfactants in latex and microlatex technology. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 1999, 153 (1), 99-110.
    7. Hamouda, T.; Baker Jr, J. R., Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J APPL MICROBIOL 2000, 89 (3), 397-403.
    8. Zhou, S.; Liao, X.; Li, X.; Deng, X.; Li, H., Poly-d, l-lactide–co-poly (ethylene glycol) microspheres as potential vaccine delivery systems. J CONTROL RELEASE 2003, 86 (2-3), 195-205.
    9. Babadagli, T., Selection of proper enhanced oil recovery fluid for efficient matrix recovery in fractured oil reservoirs. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 2003, 223 (1-3), 157-175.
    10. 葛震、高保嬌(2002),「雙親聚合物及其在強化採油中的應用」,華北工學院學報,2002年05期,346-350
    11. Hartgerink, J. D.; Beniash, E.; Stupp, S. I., Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. SCIENCE 2001, 294 (5547), 1684-1688.
    12. Luk, Y.-Y.; Abbott, N. L., Applications of functional surfactants. CURR OPIN COLLOID IN 2002, 7 (5), 267-275.
    13. 徐堅(1997),「高分子表面活性劑的分子設計」,高分子通報,2 (90),2
    14. 江龍(2002),「膠體化學概論」,科學出版社,北京,132

    15. Barakat, Y.; Gendy, T. S.; Mohamad, A. I.; Youssef, A.-F. M., Polymeric surfactants for enhanced oil recovery. Part I—critical micelle concentration of some ethoxylated alkylphenol—formaldehyde nonionics. BRIT POLYM J 1989, 21 (5), 383-389.
    16. Barakat, Y.; Gendy, T. S.; Basily, I. K.; Mohamad, A. I., Polymeric surfactants for enhanced oil recovery. Part II—the hlb-cmc relationship of ethoxylated alkylphenol-formaldehyde polymeric surfactants. BRIT POLYM J 1989, 21 (6), 451-457.
    17. Barakat, Y.; Basily, I. K.; Mohamad, A. I.; Youssef, A. M., Polymeric surfactants for enhanced oil recovery. Part III—interfacial tension features of ethoxylated alkylphenol-formaldehyde nonionic surfactants. BRIT POLYM J 1989, 21 (6), 459-465.
    18. Richards, D. H., and M. Szwarc. , Block polymers of ethylene oxide and its analogues with styrene. T FARADAY SOC 1959, 55 (9), 1644-1650.
    19. de Paz Báñez, M. V.; Robinson, K. L.; Vamvakaki, M.; Lascelles, S. F.; Armes, S. P., Synthesis of novel cationic polymeric surfactants. POLYMER 2000, 41 (24), 8501-8511.
    20. Riess, G.; Nervo, J.; Rogez, D., Emulsifying properties, of block copolymers. Oil-water emulsions and microemulsions. POLYM ENG SCI 1977, 17 (8), 634-638.
    21. Boschet, F.; Branger, C.; Margaillan, A., Synthesis and characterization of PS-block-PEO associative water-soluble polymers. EUR POLYM J 2003, 39 (2), 333-339.
    22. Minoda, M.; Sawamoto, M.; Higashimura, T., Amphiphilic block copolymers of vinyl ethers by living cationic polymerization. 4. Macromolecular amphiphiles with multiple hydroxyl groups and a cylindrical topology. MACROMOLECULES 1992, 25 (11), 2796-2801.
    23. Yamauchi, K.; Hasegawa, H.; Hashimoto, T.; Köhler, N.; Knoll, K., Synthesis and morphological studies of polyisoprene-block-polystyrene-block-poly(vinyl methyl ether) triblock terpolymer. POLYMER 2002, 43 (12), 3563-3570.
    24. Otsu, T.; Yoshida, M., Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters. MAKROMOL CHEM-RAPID 1982, 3 (2), 127-132.
    25. 楊文君、李俊柏、沈家驄(1994),「大分子引發—轉移—終止劑」,高分子學報,1994年05期,636-640
    26. Rizzardo, E.; Solomon, D. H., A new method for investigating the mechanism of initiation of radical polymerization. POLYM BULL 1979, 1 (8), 529-534.
    27. Wang, Y.; Huang, J., Controlled Radical Copolymerization of Styrene and the Macromonomer of PEO with a Methacryloyl End Group. MACROMOLECULES 1998, 31 (13), 4057-4060.
    28. 胡漢杰(2002),「高分子化學」,化學工業出版社,北京,112-130
    29. Wang, X. S.; Jackson, R. A.; Armes, S. P., Facile Synthesis of Acidic Copolymers via Atom Transfer Radical Polymerization in Aqueous Media at Ambient Temperature. MACROMOLECULES 2000, 33 (2), 255-257.
    30. Schmolka, I. R., A review of block polymer surfactants. J AM OIL CHEM SOC 1977, 54 (3), 110-116.
    31. Kobayashi, S., Ethylenimine polymers. PROG POLYM SCI 1990, 15 (5), 751-823.
    32. Kobayashi, S., Polymer synthesis by means of germylene and stannylene. Makromolekulare Chemie. MACROMOL SYMP 1991, 47 (1), 393-399.
    33. Aggarwal, S. L., Structure and properties of block polymers and multiphase polymer systems: an overview of present status and future potential. POLYMER 1976, 17 (11), 938-956.
    34. Rutot, D.; Duquesne, E.; Ydens, I.; Degée, P.; Dubois, P., Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers. POLYM DEGRAD STABIL 2001, 73 (3), 561-566.
    35. Gu, L.; Zhu, S.; Hrymak, A. N., Acidic and basic hydrolysis of poly(N-vinylformamide). J APPL POLYM SCI 2002, 86 (13), 3412-3419.
    36. Qiu, Y.; Zhang, T.; Ruegsegger, M.; Marchant, R. E., Novel Nonionic Oligosaccharide Surfactant Polymers Derived from Poly(vinylamine) with Pendant Dextran and Hexanoyl Groups. MACROMOLECULES 1998, 31 (1), 165-171.
    37. Sumaru, K.; Matsuoka, H.; Yamaoka, H., Exact Evaluation of Characteristic Protonation of Poly(vinylamine) in Aqueous Solution. J PHYS CHEM-US 1996, 100 (21), 9000-9005.
    38. Wang, Y.; Chen, X.; Pelton, R., Interactions of hydrophobically modified polyvinylamine with pluronic triblock copolymer micelles. LANGMUIR 2006, 22 (11), 4952-4958.
    39. Kirwan, L. J.; Papastavrou, G.; Borkovec, M.; Behrens, S. H., Imaging the Coil-to-Globule Conformational Transition of a Weak Polyelectrolyte by Tuning the Polyelectrolyte Charge Density. NANO LETT 2004, 4 (1), 149-152.
    40. Martel, B.; Pollet, A.; Morcellet, M., N-Benzylated Poly(vinylamine): Synthesis, Characterization, and Catalytic Activity in Ester Cleavage. MACROMOLECULES 1994, 27 (19), 5258-5262.
    41. Holland, N. B.; Qiu, Y.; Ruegsegger, M.; Marchant, R. E., Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. NATURE 1998, 392 (6678), 799-801.

    42. Holland, N. B.; Xu, Z.; Vacheethasanee, K.; Marchant, R. E., Structure of Poly(ethylene oxide) Surfactant Polymers at Air−Water and Solid−Water Interfaces. MACROMOLECULES 2001, 34 (18), 6424-6430.
    43. Vacheethasanee, K.; Marchant, R. E., Surfactant polymers designed to suppress bacterial (Staphylococcus epidermidis) adhesion on biomaterials. J BIOMED MATER RES A 2000, 50 (3), 302-312.
    44. Chen, X.; Wang, Y.; Pelton, R., pH-Dependence of the Properties of Hydrophobically Modified Polyvinylamine. LANGMUIR 2005, 21 (25), 11673-11677.
    45. Takahashi, A.; Nagasawa, M., Excluded Volume of Polyelectrolyte in Salt Solutions. J AM CHEM SOC 1964, 86 (4), 543-548.
    46. Kalyanasundaram, K.; Thomas, J. K., Solvent-dependent fluorescence of pyrene-3-carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces. J PHYS CHEM-US 1977, 81 (23), 2176-2180.
    47. Winnik, F. M., Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. CHEM REV 1993, 93 (2), 587-614.

    下載圖示 校內:2024-08-20公開
    校外:2024-08-20公開
    QR CODE