| 研究生: |
陳俑輝 Tan, Yung-Hui |
|---|---|
| 論文名稱: |
比較在離散退化模型下的三種適合度檢定 Comparing Three GOF Tests for Discrete Degradation Models |
| 指導教授: |
鄭順林
Jeng, Shuen-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 檢定力 、適合度檢定 、退化模型 、非均質性泊鬆過程 |
| 外文關鍵詞: | Power, GOF Tests, Degradation Model, Non-homogeneous Compound Poisson |
| 相關次數: | 點閱:134 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是比較兩種離散退化模型的適合度檢定(GOF)的檢定力。我們探討將特定模型作為虛無假設或對立假設時各種適合度檢定的的檢定力。我們使用來自設備可靠性和軟件可靠性實驗的兩個實際數據集來說明比較過程。我們在指定的假設設置下構建不同樣本大小和時間點的模擬。考慮的三個適合度檢定是Watson 檢定,Cramér-von Mises(CM)檢定,Anderson-Darling(AD)檢定。這項研究的有趣發現是適合度檢定的檢定力會受到假設設置的影響。
The purpose of this study is to compare the powers of the Goodness-of-fit (GOF) tests for two kinds of discrete degradation models. We explore the powers of the GOF tests for the cases that the specified model is placed as the null hypothesis or as the alternative hypothesis. We use two real data sets from device reliability and software reliability experiment to illustrate the process of the comparisons. We construct simulations for different sample sizes and time points under specified hypothesis setting. The three GOF tests considered are Watson test, Cramér–von Mises (CM) test, Anderson-Darling (AD) test. The interesting discovery
of this study is that the power of GOF tests depends on the hypothesis settings.
[1] Anderson, T. W., and Darling, D. A. A Test of Goodness of Fit. Journal of the American
Statistical Association 49 (1954), 765–769.
[2] Bagdonavicius, V., and Nikulin, M. Accelerated Life Models: Modeling and Statistical
Analysis. Chapman and Hall/CRC, 2002.
[3] Cester, A., Chimino, S., Miranda, E., Candelori, A., Ghidini, G., and Paccagnelia,
A. Statistical Model for Radiation-Induced Wear-Out of Ultra-Thin Gate Oxides After
Exposure to Heavy Ion Irradiation. IEEE Transactions on Nuclear Science 50 (2003),
2167–2175.
[4] Chen, D. G., Lio, Y., Ng, H. K. T., and Tsai, T.-R. Statistical Modeling for Degradation
Data. Springer-Verlag., 2017.
[5] Choulakian, V., Lockhart, R. A., and Stephens, M. A. Cramer-von Mises Statistics for
Discrete Distributions. The Canadian Journal of Statistic 22 (1994), 125–137.
[6] Cohen, Y., and Cohen, J. Y. Statistics and Data with R: An Applied Approach Through
Examples. John Wiley and Sons, 2008.
[7] D’Agostino, R. B. Goodness-of-Fit-Techniques. 1986.
[8] Darling, D. A. The Kolmogorov-Smirnov, Cramer-von Mises Tests. The Annals of
Mathematical Statistics 28, 4 (1957), 823–838.
[9] Farrell, P. J., and Rogers-Stewart, K. Comprehensive Study of Tests for Normality and
Symmetry: Extending The Spiegelhalter Test. Journal of Statistical Computation and
Simulation 76 (2006), 803–816.
[10] Filion, G. J. The Signed Kolmogorov-Smirnov Test: Why It Should Not Be Used.
GigaScience 4, 9 (2015).
[11] Hsieh, M.-H., and Jeng, S.-L. Accelerated Discrete Degradation Models for Leakage
Current of Ultra-Thin Gate Oxides. IEEE Transactions on Reliability 56 (2007), 369 –
380.
[12] Hsieh, M.-H., Jeng, S.-L., and Kvam, P. Critical Fault-Detecting Time Evaluation in
Software with Discrete Compound Poisson Models. Journal of Quality Technology 51
(2019), 94–108.
[13] Jeske, D. R., Zhang, X., and Pham, L. Adjusting Software Failure Rates that are
Estimated from Test Data. IEEE Transactions on Reliability 54 (2005), 107–114.
[14] Jørgensen, B. Theory of Dispersion Models. Chapman and Hall, 1997.
[15] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Wiley-Interscience,
2003.
[16] Meeker, W. Q., and Escobar, L. A. Statistical Methods for Reliability Data. John Wiley
and Sons, 1998.
[17] Mohd Razali, N., and Yap, B. Power Comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling and
Analytics 2 (2011), 21–33.
[18] Park, C. Stochastic Accelerated Degradation Models Based on a Generalized
Cumulative Damage Approach. Statistical Modeling for Degradation Data (2017), 3–
20.
[19] Parsons, L. B., and Sturges, W. S. Conductivity as Applied to Studies of Bacterial
Metabolism ii. Parallelism Between Ammonia And Conductivity in Nutrient Gelatin
Cultures of Putrefactive Anaerobes. Journal of Bacteriology (1926), 267–272.
[20] Peng, C.-Y., and Tseng, S.-T. Mis-Specification Analysis of Linear Degradation
Models. IEEE Transactions on Reliability 58 (2009), 444–455.
[21] Pham, H. Software Reliability. Springer-Verlag, 2000.
[22] Ross, S. M. Introduction to Probability Models. San Diego: Academic Press, 2003.
[23] Scheffe, H. The Relation of Control Charts to Analysis of Variance and Chi-Square
Tests. Journal of the American Statistical Association 42 (1947), 425–431.
[24] Shapiro, S. S., and Wilk, M. B. An Analysis of Variance Test for Normality (Complete
Samples). Biometrika 52 (1965), 591–611.
[25] Stephens, M. A. EDF Statistics for Goodness of Fit and Some Comparisons. Journal
of the American statistical Association 69 (1974), 730–737.
[26] Tseng, S.-T., and Lee, I.-C. Optimum Allocation Rule for Accelerated Degradation
Tests With a Class of Exponential-Dispersion Degradation Models. Technometrics 58
(2016), 244–254.
[27] Wichitchan, S., Yao, W., and Yang, G. Hypothesis Testing for Finite Mixture Models.
Computational Statistics & Data Analysis. 132 (2019), 180–189.
[28] Wu, M. F. Comparing GOF Tests for Degradation Measurements. Master Thesis NCKU
(2018).
[29] Yamada, S. Software Reliability Modeling: Fundamentals and Applications. Springer-
Verlag., 2014.
校內:2024-08-13公開