簡易檢索 / 詳目顯示

研究生: 陳俑輝
Tan, Yung-Hui
論文名稱: 比較在離散退化模型下的三種適合度檢定
Comparing Three GOF Tests for Discrete Degradation Models
指導教授: 鄭順林
Jeng, Shuen-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 127
中文關鍵詞: 檢定力適合度檢定退化模型非均質性泊鬆過程
外文關鍵詞: Power, GOF Tests, Degradation Model, Non-homogeneous Compound Poisson
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是比較兩種離散退化模型的適合度檢定(GOF)的檢定力。我們探討將特定模型作為虛無假設或對立假設時各種適合度檢定的的檢定力。我們使用來自設備可靠性和軟件可靠性實驗的兩個實際數據集來說明比較過程。我們在指定的假設設置下構建不同樣本大小和時間點的模擬。考慮的三個適合度檢定是Watson 檢定,Cramér-von Mises(CM)檢定,Anderson-Darling(AD)檢定。這項研究的有趣發現是適合度檢定的檢定力會受到假設設置的影響。

    The purpose of this study is to compare the powers of the Goodness-of-fit (GOF) tests for two kinds of discrete degradation models. We explore the powers of the GOF tests for the cases that the specified model is placed as the null hypothesis or as the alternative hypothesis. We use two real data sets from device reliability and software reliability experiment to illustrate the process of the comparisons. We construct simulations for different sample sizes and time points under specified hypothesis setting. The three GOF tests considered are Watson test, Cramér–von Mises (CM) test, Anderson-Darling (AD) test. The interesting discovery
    of this study is that the power of GOF tests depends on the hypothesis settings.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1. Goodness-of-fit (GOF) Tests . . . . . . . . . . . . . . . . . . . . . 5 1.2.2. Degradation Models . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Content of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2. Methodology 10 2.1. GOF Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1. Type I Error Rate and Power . . . . . . . . . . . . . . . . . . . . . 10 2.1.2. GOF Test Statistics for Continuous Data . . . . . . . . . . . . . . . 12 2.1.3. GOF Test Statistics for Discrete Data . . . . . . . . . . . . . . . . . 13 2.1.4. Discussion of GOF Test Statistic . . . . . . . . . . . . . . . . . . . 15 2.2. Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1. Nonhomogeneous Continuous-Compound Poisson Model . . . . . . 16 2.2.2. Likelihood Function of NHCCP Model Parameters . . . . . . . . . 18 2.2.3. Nonhomogeneous Discrete-Compound Poisson Model . . . . . . . 22 2.2.4. Likelihood Function of NHDCP Model Parameters . . . . . . . . . 25 2.3. Flow Chart of GOF Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Chapter 3. Simulation Study Based on Real Data 28 3.1. NHCCP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.1. MLEs of NHCCP Models . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.2. Testing for NHCCP Models . . . . . . . . . . . . . . . . . . . . . . 30 3.2. NHDCP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1. MLEs of NHDCP Model . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2. Testing for NHDCP Models . . . . . . . . . . . . . . . . . . . . . 42 3.3. Discussion of Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chapter 4. Simulation Study Based on NHCCP Model 46 4.1. Simulation Data from MCL . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.1. Setting of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.2. Testing of Simulation Data . . . . . . . . . . . . . . . . . . . . . . 48 4.2. Simulation Data from MCW . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.1. Setting of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2. Testing of Simulation Data . . . . . . . . . . . . . . . . . . . . . . 52 4.3. Simulation Data from MCG . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.1. Setting of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2. Testing of Simulation Data . . . . . . . . . . . . . . . . . . . . . . 55 4.4. Discussion of Simulation Result . . . . . . . . . . . . . . . . . . . . . . . 56 Chapter 5. Simulation Study Based on NHDCP Model 57 5.1. Simulation Data from MDB . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1. Setting of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.2. Testing of Simulation Data . . . . . . . . . . . . . . . . . . . . . . 59 5.2. Simulation Data from MDP . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2.1. Setting of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2.2. Testing of Simulation Data . . . . . . . . . . . . . . . . . . . . . . 70 5.3. Discussion of Simulation Result . . . . . . . . . . . . . . . . . . . . . . . 79 Chapter 6. Conclusion and Future Work 80 6.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References 82 Appendix A. CDFs of GOF Tests Referred to Figure 3.1 84 Appendix B. CDFs of GOF Tests Referred to Figure 3.2 90 Appendix C. CDFs of GOF Tests Referred to Figure 3.3 96 Appendix D. CDFs of GOF Tests Referred to Figure 3.4 102 Appendix E. Type I Error Rates and Powers Referred to Figure 5.5-5.6 108 Appendix F. Type I Error Rates and Powers Referred to Figure 5.11-5.12 118

    [1] Anderson, T. W., and Darling, D. A. A Test of Goodness of Fit. Journal of the American
    Statistical Association 49 (1954), 765–769.
    [2] Bagdonavicius, V., and Nikulin, M. Accelerated Life Models: Modeling and Statistical
    Analysis. Chapman and Hall/CRC, 2002.
    [3] Cester, A., Chimino, S., Miranda, E., Candelori, A., Ghidini, G., and Paccagnelia,
    A. Statistical Model for Radiation-Induced Wear-Out of Ultra-Thin Gate Oxides After
    Exposure to Heavy Ion Irradiation. IEEE Transactions on Nuclear Science 50 (2003),
    2167–2175.
    [4] Chen, D. G., Lio, Y., Ng, H. K. T., and Tsai, T.-R. Statistical Modeling for Degradation
    Data. Springer-Verlag., 2017.
    [5] Choulakian, V., Lockhart, R. A., and Stephens, M. A. Cramer-von Mises Statistics for
    Discrete Distributions. The Canadian Journal of Statistic 22 (1994), 125–137.
    [6] Cohen, Y., and Cohen, J. Y. Statistics and Data with R: An Applied Approach Through
    Examples. John Wiley and Sons, 2008.
    [7] D’Agostino, R. B. Goodness-of-Fit-Techniques. 1986.
    [8] Darling, D. A. The Kolmogorov-Smirnov, Cramer-von Mises Tests. The Annals of
    Mathematical Statistics 28, 4 (1957), 823–838.
    [9] Farrell, P. J., and Rogers-Stewart, K. Comprehensive Study of Tests for Normality and
    Symmetry: Extending The Spiegelhalter Test. Journal of Statistical Computation and
    Simulation 76 (2006), 803–816.
    [10] Filion, G. J. The Signed Kolmogorov-Smirnov Test: Why It Should Not Be Used.
    GigaScience 4, 9 (2015).
    [11] Hsieh, M.-H., and Jeng, S.-L. Accelerated Discrete Degradation Models for Leakage
    Current of Ultra-Thin Gate Oxides. IEEE Transactions on Reliability 56 (2007), 369 –
    380.
    [12] Hsieh, M.-H., Jeng, S.-L., and Kvam, P. Critical Fault-Detecting Time Evaluation in
    Software with Discrete Compound Poisson Models. Journal of Quality Technology 51
    (2019), 94–108.
    [13] Jeske, D. R., Zhang, X., and Pham, L. Adjusting Software Failure Rates that are
    Estimated from Test Data. IEEE Transactions on Reliability 54 (2005), 107–114.
    [14] Jørgensen, B. Theory of Dispersion Models. Chapman and Hall, 1997.
    [15] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Wiley-Interscience,
    2003.
    [16] Meeker, W. Q., and Escobar, L. A. Statistical Methods for Reliability Data. John Wiley
    and Sons, 1998.
    [17] Mohd Razali, N., and Yap, B. Power Comparisons of Shapiro-Wilk, Kolmogorov-
    Smirnov, Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling and
    Analytics 2 (2011), 21–33.
    [18] Park, C. Stochastic Accelerated Degradation Models Based on a Generalized
    Cumulative Damage Approach. Statistical Modeling for Degradation Data (2017), 3–
    20.
    [19] Parsons, L. B., and Sturges, W. S. Conductivity as Applied to Studies of Bacterial
    Metabolism ii. Parallelism Between Ammonia And Conductivity in Nutrient Gelatin
    Cultures of Putrefactive Anaerobes. Journal of Bacteriology (1926), 267–272.
    [20] Peng, C.-Y., and Tseng, S.-T. Mis-Specification Analysis of Linear Degradation
    Models. IEEE Transactions on Reliability 58 (2009), 444–455.
    [21] Pham, H. Software Reliability. Springer-Verlag, 2000.
    [22] Ross, S. M. Introduction to Probability Models. San Diego: Academic Press, 2003.
    [23] Scheffe, H. The Relation of Control Charts to Analysis of Variance and Chi-Square
    Tests. Journal of the American Statistical Association 42 (1947), 425–431.
    [24] Shapiro, S. S., and Wilk, M. B. An Analysis of Variance Test for Normality (Complete
    Samples). Biometrika 52 (1965), 591–611.
    [25] Stephens, M. A. EDF Statistics for Goodness of Fit and Some Comparisons. Journal
    of the American statistical Association 69 (1974), 730–737.
    [26] Tseng, S.-T., and Lee, I.-C. Optimum Allocation Rule for Accelerated Degradation
    Tests With a Class of Exponential-Dispersion Degradation Models. Technometrics 58
    (2016), 244–254.
    [27] Wichitchan, S., Yao, W., and Yang, G. Hypothesis Testing for Finite Mixture Models.
    Computational Statistics & Data Analysis. 132 (2019), 180–189.
    [28] Wu, M. F. Comparing GOF Tests for Degradation Measurements. Master Thesis NCKU
    (2018).
    [29] Yamada, S. Software Reliability Modeling: Fundamentals and Applications. Springer-
    Verlag., 2014.

    無法下載圖示 校內:2024-08-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE