| 研究生: |
林修杰 Lin, Shiou-Jie |
|---|---|
| 論文名稱: |
應用網路單形法求解最小分配成本問題之研究 A network simplex algorithm for the minimum distribution cost problem |
| 指導教授: |
王逸琳
Wang, I-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 網路單形法 、最小分配成本問題 、最小成本流量問題 、網路最佳化 |
| 外文關鍵詞: | network simplex algorithm, minimum distribution cost problem, network optimization, minimum cost flow problem |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
網路最佳化為作業研究之一重要子領域,而最小成本流量問題(Minimum
Cost Flows;MCF) 即為一常見的網路最佳化問題。MCF 事實上為線性規劃中
的特例問題, 基於其特殊的網路架構, 得以簡化原本在使用單形法(simplex
algorithm) 時繁瑣的矩陣運算,並由此發展出一套更有效率的網路單形法(network simplex algorithm)。MCF雖然能夠涵蓋許多網路問題,但仍有其應用的限制,Fang and Qi(2003) 基於產業中製造與分配之特性,將原本的MCF加入一種新型態的分配節點(D 節點),並提出一套新的最小成本流量模型,稱之為最小分配成本問題(Minimum Distribution Cost Problem;MDCP)。MDCP中,流入D節點的總流量必須依照給定的比例分配給其所有流出的弧。在此架構下,以往的網路單形法將無法適用。雖然Fang and Qi(2003) 提出一套求解MDCP的網路單形法,但該方法僅適用於無弧容量限制下的MDCP,而且其求解方式仍偏向直接求解方程式,缺乏圖形化的求解方法;另外,他們對於網路單形法中諸如初始解之找尋、流量疊代與計算對偶變數等等的圖形化求解方式亦未深入探討。在本論文中,將進一步討論這些議題,並利用拆解基解圖使之成為數個基群集的方式,以基群集為基礎發展出一套可求解具弧容量限制MDCP的圖形化網路單形法。最後,本論文亦將進一步探討加入D節點的最大流量問題,以解釋Lin(2005) 論文中關於最大流量問題達最佳解的對偶變數之分群情形。
The minimum cost flow problem seeks an optimal flow assignment over a network satisfying the node flow balance constraints and arc flow bounds constraints. These constraints are too simplified to model some real cases.To model the distillation or decomposition of products in some manufacturing processes, a minimum distribution cost problem (MDCP) on a specialized manufacturing network flow model has been investigated. In an MDCP, a specialized node called D-node is used to model a distillation process which only connects with a single incoming arc and several outgoing arcs. The flows entering a D-node have to be distributedaccording to a pre-specified ratio associated with each of its outgoing arcs. Such a proportional relationship between the arc flows associated with each D-node complicatesthe problem and makes the MDCP harder than conventional min-cost network flow problem. A network simplex algorithm for uncapacitated MDCP has been outlined in literature, but its detailed graphical procedures such as initial basic feasible solution computation, dual variables updates, and flow pivoting operations have not yet been given. In this thesis, we resolve these issues by upper bound techniques as well as graphical operations which decompose each pivoting graph into several components for calculating both the arc flows and the dual variables. Other issues regarding efficient ways to obtain an initial primal basic feasible solution to start with our algorithm and mathematical insights for solving the MDCP on distribution networks will also be investigated and discussed.
Ahuja, R. K. and Orlin, J. B. Distance-directed augmenting path algorithms for maximum flow and parametric maximum flow problems. Naval Research Logistics
Quarterly, 38, 413-430, 1991.
Ahuja, R. K., Goldberg, A. V., Orlin, J. B. and Tarjan, R. E. Finding minimum-cost
flows by double scaling. Mathematical Programming, 53, 243-266, 1992.
Ahuja, R. K., Magnanti, T. and Orlin, J. B. Network flows: Theory, algorithms and
applications. Englewood Cli®s, New Jersey, U.S.A.: Prentice Hall, 1993.
Ali, A. I., Padman, R. and Thiagarajan, H. Dual algorithms for pure network problems.Operations Research, 37(1), 159-171, 1989.
Armstrong, R. D., Chen, W., Goldfarb, D. and Jin, Z. Strongly polynomial dual
simplex methods for the maximum flow problem. Mathematical Programming,
80, 17-33, 1998.
Armstrong, R. D. and Jin, Z. A new strongly polynomial dual network simplex algo-
rithm. Mathematical Programming, 78, 131-148, 1997.
Bellman, R. E. On a routing problem. Quarterly of Applied Mathematics, 16, 87-90,
1958.
Cohen, E. and Megiddo, N. Algorithms and complexity analysis for some flow problems.Algorithmica, 11(3), 320-340, 1994.
Dantzig, G. Application of the simplex method to a transportation problem. In Activity
analysis of production and allocation. New York, N. Y.: John Wiley & Sons Inc.,
359-373, 1951.
Dantzig, G. B. Linear programming and extensions. Princeton, N.J.: Princeton Uni-
versity Press, 1962.
Dial, R. Algorithm 360: Shortest path forest with topological ordering. Communica-
tions of the ACM, 12(11), 632-633, 1969.
Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 269-271, 1959.
Fang, S. C. and Qi, L. Manufacturing network flows: A generalized network flow
model for manufacturing process modeling. Optimization Methods and Software,
18, 143-165, 2003.
Ford, L. R. Network flow theory. Santa Monica, California: The RAND Corp., 1956.
Ford, L. R. and Fulkerson, D. R. Maximal flow through a network. Canadian Journal
of Mathematics, 8, 399-404, 1956.
Ford, L. R. and Fulkerson, D. R. Flows in networks. Princeton, N.J.: Princeton
University Press, 1962.
Fredman, M. L. and Tarjan, R. E. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34(3), 596-615, 1987.
Goldberg, A. V. and Tarjan, R. E. A new approach to the maximum flow problem.
Journal of the ACM, 35, 921-940, 1988.
Goldfarb, D. and Chen, W. On strongly polynomial dual simplex algorithms for the
maximum flow problem. Mathematical Programming, 159-168, 1997.
Goldfarb, D. and Hao, J. A primal simplex algorithm that solves the maximum flow
problem in at most nm pivots and O(n2m) time. Mathematical Programming,
47, 353-365, 1990.
Goldfarb, D. and Jin, Z. An O(nm)-time network simplex algorithm for the shortest
path problem. Operations Research, 47(3), 445-448, 1999.
Hoffman, A. J. and Kruskal, J. B. Integral boundary points of convex polyhedra.
In H. Kuhn and A. Tucker (Eds.), Linear inequalities and related systems (pp.
233-246). Princeton, NJ: Princeton University Press, 1956.
Johnson, E. L. On shortest paths and sorting. In Proceedings of the ACM 25th annual
conference, 510-517, 1972.
Karzanov, A. V. Determining the maximal flow in a network by the method of preflows. Soviet Math. Dokl, 15, 434-437, 1974.
Lin, J. C. Maximum flows in distribution networks: problem generator and algorithms.Master's thesis, National Cheng Kung University, 2005.
Mo, J., Qi, L. and Wei, Z. A network simplex algorithm for simple manufacturing
network model. Journal of Industrial and Management Optimization, 1(2), 251-
273, 2005.
Orlin, J. B. A polynomial time primal network simplex algorithm for minimum cost
flows. Mathematical Programming, 78, 109-129, 1997.
Orlin, J. B., Plotkin, S. A. and Tardos, E. Polynomial dual network simplex algorithms.Mathematical Programming, 60, 255-276, 1993.
Ting, M. J. Maximum flow problem in the distribution network flow model. Master's
thesis, National Cheng Kung University, 2005.
Yang, Y. H. Uncapacitated minimum cost flow problem in a distribution network.
Master's thesis, National Cheng Kung University, 2005.