| 研究生: |
黃綉評 Huang, Hsiu-Ping |
|---|---|
| 論文名稱: |
藉由天然鍵性軌域方法研究第六族過渡金屬單取代五羰基錯合物的反式效應 Studies of Trans-effect in Group 6B Transition-metal Mono-substituted Pentacarbonyl Complexes by Natural Bond Orbital Method |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 天然鍵性軌域分析 、反式效應 |
| 外文關鍵詞: | Natural bond orbital analysis, Trans-effect |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用天然鍵性軌域(NBO)分析法探討第六族過渡金屬單取代五羰基錯合物M(CO)5L {M= Cr, Mo, W;L= CO, F-, Cl-, Br-, I-, PF3, PCl3, PBr3, PI3}的反式效應,由鍵長、電荷、[2π]及[5σ]電子分佈和二級擾動能量E(2)等計算結果中,可知配位基L對於軸向的CO影響較大。
由計算結果中發現鹵素配位基的dπ(M)→RY*(X)交互作用大小與雲散效應的傾向相同,鹵素配位基π-acceptor的排列順序:F-<Cl-<Br-<I-。
另外,值得注意的是文獻[2]中指出phosphines/phosphites配位基的π回饋貢獻是由dπ(M)→σ*(P-C)/dπ(M)→σ*(P-O),顯示phosphines/phosphites主要以σ*(P-C)/σ*(P-O)軌域來接受電子,而不是一般認為的3d軌域。在本研究的E(2)值分析結果中,同樣得到PX3配位基主要以σ*(P-X)軌域來接受過渡金屬dπ軌域所提供的電子。
We have performed natural bond orbital calculations on Group 6B transition metal Hexacarbonyls M(CO)6 and monosubstituted analogues: M(CO)5L {M= Cr, Mo, W;L= CO, F-, Cl-, Br-, I-, PF3, PCl3, PBr3, PI3} to investigate electronic structures. It is our main goals to understand the directionality resulted from the substituents (L) by analysis of 2 and 5 populations ([2π] and [5σ]) and the second order perturbation energies, E(2), associated. Similar to geometry parameters and charge variations, those results exhibit the carbonyls trans to L are more pronounced influenced in the presence of L than those cis to L.
More informatively, we have found that the halide-substitution effects are parallel to the“nephulauxeric”or cloud-expanding effects and can be described by the dπ(M)→RY*(X) donor-acceptor interactions. The overall pi-accepting capability of ligands show the trend of F-<Cl-<Br-<I-.
It is noteworthy that the traditional dπ→3d description of backbonding for phosphines/phosphites should be better ascribed to dπ(M)→σ*(P-C)/ dπ(M)→ σ*(P-O) charge transfer due to hyperconjugation effects. This conclusion is further supported by that the extents of polarization of PX sigma antibonding due to coordination dominates the extents of backbonding observed by E(2) analysis.
1. Miessler, G. L.; Tarr, D. A. Inorganic Chemistry, 3rd; Pearson Prentice Hall: New Jersey, 2004, 337-449.
2. Su, W. L.; Huang, H. P.; Chen, W. T.; Hsu, W. Y.; Chang, H. Y.; Ho, S. Y.; Wang, S. P.; Shyu, S. G. J. Chin. Chem. Soc. 2011, 58, 1-11.
3. Wang, S. P.; Yan, K. M.; Hsu, W. Y.; Huang, M. Y.; Wu, M. Y. J. Chin. Chem. Soc. 2009, 56, 1205-1215.
4. (a) Good-man, L.; Gu, H. B.; Pophristic, V. J. Phys. Chem. A 2005, 109, 1223-1229. (b) Song, L. C.; Lin, Y. C.; Wu, W.; Zhang, Q. N.; Mo, Y. R. J. Phys. Chem. A 2005, 109, 2310-2316. (c) Dias, J. F.; Seidl, P. R.; Carneiro, J. W. D. M.; Tostes, J. G. R. J. Mol. Struct. (Theochem) 2004, 677, 51-54.
5. (a) DuPré, D. B. J. Phys. Chem. A 2005, 109, 622-628. (b) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253-4264.
6. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F. J. Am. Chem. Soc. 2003, 125, 5973-5987.
7. Lee, H. Y.; Wang, S. P.; Chang, T. C. Int. J. Quantum Chem. 2001, 81, 53-65.
8. (a)Weinhold, F.; Landis, C. R. Chem. Educ. Res. Pract. Eur. 2001, 2, 91-104. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926. (c) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746. (d) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736-1740. (e) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066-4073. (f) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211-7218.
9. Wang, S. P.; Chang, T. C. J. Mol. Struct. (Theochem) 2000, 499, 127-135.
10. Uddin, J.; Boehme, C.; Frenking, G. Organometallics 2000, 19, 571-582.
11. (a) Frenking, G.; Fröhlich, N. Chem. Rev. 2000, 100, 717-774. (b) Diefenbach, A.; Bickelhaupt, F. M.; Frenking, G. J. Am. Chem. Soc. 2000, 122, 6449-6458. (c) Jonas, V.; Thiel, W. Organometallics 1998, 17, 353-360. (d) Ehlers, A. W.; Dapprich, S.; Vyboishchikov, S. F.; Frenking, G. Organometallics 1996, 15, 105-117. (e) Machado, F. B. C.; Davidson, E. R. J. Phys. Chem. 1993, 97, 4397-4403. (f) Davidson, E. R.; Kunze, K. L.;Machado, F. B. C.; Chakravorty, S. J. Acc. Chem. Res. 1993, 26, 628-635.
12. (a) Ammal, S. S. C.; Venuvanalingam, P. J. Chem. Phys. 1998, 109, 9820-9830. (b) Ammal, S. S. C.; Venuvanalingam, P.; Pal, S. J. Chem. Phys. 1997, 107, 4329-4336.
13. (a) Ehlers, A. W.; Ruiz-Morales, Y.; Baerends, E. J.; Ziegler, T. Inorg. Chem. 1997, 36, 5031-5036. (b) Li, J.; Schreckenbach, G.; Ziegler, T. J. Am. Chem. Soc. 1995, 117, 486-494. (c) Ehlers, A. W.; Frenking, G. J. Am. Chem. Soc. 1994, 116, 1514-1520. (d) Lewis, K. E.; Golden, D. M.; Smith, G. P. J. Am. Chem. Soc. 1984, 106, 3905-3912. (e) Beach, N. A.; Gray, H. B. J. Am. Chem. Soc. 1968, 90, 5713-5721.
14. Ho, T. M.; Chang, T. C. Int. J. Quantum Chem. 1996, 57, 229-233.
15. Schneider, W. F.; Nance, B. I.; Wallington, T. J. J. Am. Chem. Soc. 1995, 117, 478-485.
16. Wang, K. S.; Wang, D.; Yang, K.; Richmond, M. G.; Schwartz, M. Inorg. Chem. 1995, 34, 3241-3244.
17. (a) Becke, A. D. J. Chem. Phys.1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
18. Wang, S. P.; Richmond, M. G.; Schwartz, M. J. Am. Chem. Soc. 1992, 114, 7595-7596.
19. Maseras, F.; Morokuma, K. Chem. Phys. Lett. 1992, 195, 500-504.
20. (a) Kunze, K. L.; Davidson, E. R. J. Phys. Chem. 1992, 96, 2129-2141. (b) Ziegler, T.; Tschinke, V.; Ursenbach, C. J. Am. Chem. Soc. 1987, 109, 4825-4837. (c) Arratia-Perez, R.; Yang, C. Y. J. Chem. Phys. 1985, 83, 4005-4014.
21. Wang, S. P.; Yuan, P.; Schwartz, M. Inorg. Chem. 1990, 29, 484-487.
22. Wang, S. P.; Schwartz, M. J. Phys. Chem. 1990, 94, 2702-2705.
23. Morris, R. J.; Girolami, G. S. Inorg. Chem. 1990, 29, 4167-4169.
24. (a) Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1990, 9, 1758-1766. (b) Rahman, M. M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1-7. (c) Rahman, M. M.; Liu, H. Y.; Prock, A.; Giering, W. P. Organometallics 1987, 6, 650-658. (d) Golovin, M. N.; Rahman, M. M.; Belmonte, J. E.; Giering, W. P. Organometallics 1985, 4, 1981-1991.
25. Bush, R. C.; Angelici, R. J. Inorg. Chem. 1988, 27, 681-686.
26. Byers, B. P.; Hall, M. B. Organometallics 1987, 6, 2319-2325.
27. Orpen, A. G.; Connelly, N. G. J. Chem. Soc. Chem. Commun. 1985, 1310-1311.
28. (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310.
29. (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654. (b) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639-5648.
30. Angelici, R. J.; Malone, M. D. Inorg. Chem. 1967, 6, 1731-1736.
31. Abel, E. W.; Butler, I. S.; Reid, J. G. J. Chem. Soc. 1963, 2068-2070.
32. Bent, H. A. Chem. Rev. 1961, 61, 275-311.
33. Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939-2947.
34. 黃國棠,國立成功大學化學研究所碩士論文, 2004.
35. 許文一,國立成功大學化學研究所博士論文, 2007.
36. Spessard, G. O.; Miessler, G. L. Organometallic Chemistry; Prentice Hall: Upper Saddle River, New Jersey, 1997.
37. http://www.chem.wisc.edu/~nbo5/
校內:2016-08-01公開