簡易檢索 / 詳目顯示

研究生: 林晉宏
Lin, Chin-Hung
論文名稱: 摻鉺ZBLAN綠光光纖雷射之模擬與研製
Simulation and Experiment of Green Er:ZBLAN Fiber Lasers
指導教授: 蔡宗祐
Tasi, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 53
中文關鍵詞: 摻鉺光纖綠光雷射上轉換
外文關鍵詞: ZBLAN, Green Laser, Up-conversion
相關次數: 點閱:41下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用到摻鉺氟化物光纖Er:ZBLAN當增益光纖,接著利用到波長970nm的雷射二極體去激發高摻雜濃度的增益光纖,接著經由上轉換機制去吸收更強能量然後轉換更短的波長,假設為五階雷射系統然後去推導出速率方程式,再藉由模擬程式去尋找出更適合的反射率而得到更好的能量,藉由模擬數據去運用到綠光雷射實驗上,且嘗試著氟化物光纖與玻璃光纖在熔接上的各種方式,而在氟化物光纖材料上尋求更好的處理。

    The main purpose of this study is to simulate and optimize the up-conversion green Er:ZBLAN fiber laser. We also conduct experiments on a 970-nm CW-pumped green Er:ZBLAN fiber laser based on the simulation results.First, we derive the rate equations for a laser system with 5 energy levels and successfully obtain lasing results in the simulation, by the up-conversion mechanism using an intense 970-nm pump,However, in the experiments, we only observed strong amplified spontaneous emission at 547nm. The lasing at 547nm could not be achieved in the experiments due to the difficulty and high loss of fiber alignment. It is concluded that an up-conversion green or blue Er:ZBLAN laser requires a sophisticated alignment technique and a more advanced solution for splicing silica fiber and fluoride fiber.

    摘要 i Abstract ii 致謝 iii 第1章 緒論 4 1-1前言 4 1-2研究動機及方法 7 表 1 1 Comparsion of basic properties between silica and ZBLAN 8 1-3 架構圖 9 圖1-1光纖式綠光雷射 9 參考文獻 10 第2章 原理及實驗架構 12 2-1 簡介 12 圖 2 2 四階雷射系統 12 圖 2 1 三階雷射系統 12 2-2 上轉換過程UP-CONVERSION PROCESSES 14 2-3 鉺能階結構分析 16 圖 2 3鉺能階 16 圖 2 4鉺離子吸收放射頻譜圖(Erbium fiber made by Liekki company) 17 圖 2 5 當輸入為同樣功率時,在 970nm-980nm的區間,其GSA的吸收情況及540nm輸出的功率[7] 18 2-4 速率方程式(RATE EQUATION) 19 圖 2 6 5 Level System 19 圖 2 7實驗與模擬架構圖 20 表 2 1 Rate Equation 參數定義 22 2-5 穩態時分析及推導 23 2-6 動態分析及推導 25 圖 2 8 The sum of forward I+ and backward 25 圖 2 9 Gain Medium of cavity 25 表 2 2共振腔內係數 28 2-7 雷射動態表示式 29 參考文獻 30 第3章 綠光雷射輸出特性模擬及分析 31 3-1 穩態分析 31 表 3 1 各項模擬參數 32 圖 3 1 穩態圖分析 33 圖 3 2 當 變短10倍時,可以發現很明顯的N3原子數急遽增加 34 3-2 時間變量分析 35 圖 3 3 時間變量分析圖 35 圖 3 4當Ip=5倍Ips的時候,其餘參數不變下 36 3-3 綠光雷射輸出及輸出能量 37 圖 3 5 腔內光子共振的情形 37 圖 3 6 腔內原子居量反轉情形 38 圖 3 7 綠光雷射輸出能量 39 3-4 三種參數對輸出能量的影響 40 圖 3 8 腔內反射率對輸出能量的影響 40 3-4-1 Pump Power及反射率的影響 41 圖 3 9 隨著激發能量的增加及搭配著各反射率的輸出能量 41 3-4-2 增益光纖對輸出能量的影響 42 圖 3 10 增益光纖長度對輸出能量的影響 42 參考文獻 43 第4章 實驗結果 44 4-1 綠光雷射架構及結果 44 圖 4-1 綠光雷射架構圖 44 圖 4-2 974nm Laser Diode輸出功率圖 45 圖 4-3 974nm Laser Diode通過980/1550 WDM的輸出功率圖 46 圖 4-4 雷射控制溫度及熱阻值對照圖 47 圖 4-5 當TEC=10K歐姆時,974nm Laser Diode 的相對功率強度 48 圖 4-6當TEC=17K歐姆時,974nm Laser Diode 的相對功率強度 48 圖 4-7 左邊為熔接機,右邊為三軸調整基座 49 圖 4-8 當激發光源為970nm 時,增益光纖 Er:ZBLAN 長度為20cm,輸入電流為100mA時 50 圖 4-9 激發光源為970nm 時,增益光纖 Er:ZBLAN 長度為40cm,輸入電流為100mA時 51 第5章 結論與未來展望 52 5-1 模擬結果與實驗結果討論 52 5-2 未來展望 53 圖 5-1 增進激發效率架構圖 53

    參考文獻
    [1] A.Einstein,”Zur Quantentheorie der Strahlung,”Phys.Z.18:121,1917.
    [2] A. L. Schawlow, and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112:1940, (1958).
    [3] T.H Maiman,”Stimulated optical radiation in ruby masers,” Nature 187:493,(1960)
    [4] K.C Kao,G.A. Hockham “Dielectric-fibre surface waveguides for optical frequencies,” Proc. IEEE 113(7):1151-1158(1966).
    [5] K.O.Hill,”Photosensitivity in optical fiber waveguide: application to reflection fiber fabrication,” Appl.Phys.Lett. 32:647.(1978).
    [6] D. Hargis and A. Earman, Laser Focus World 145 (1998).
    [7] H. Jones-Bey, Laser Focus World, 36(1), (2000).
    [8] L. F. Johnson and H. J. Guggenheim, Applied Physics Letters.
    [9] S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, Electronics Letters, 28, 1243 (1992).
    [10] S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, Conference on Lasers and Electro-Optics, post deadline paper CPD23 (1995).
    [11]闕文修,姚熹,霍玉晶,”LD磊浦的Nd:MgO:LiNbO3單晶光纖腔外倍頻激光器”,中國激光,第22卷,第8期,1995年。
    [12] M. Poulain, M. Poulain, and J. Lucas, “Verres fluores autetrafluorure de zirconium proprietes optiques d’un verre dope au Nd3+,” Research Bulletin, vol. 10, no. 4, pp. 243–246, 1975.

    [13] K. Ohsawa, T. Shibata, K. Nakamura, and S. Yoshida,r laser,” “Fluorozirconate glasses for infrared transmitting optical fibers,” in Proceedings of the 7th European Conference on Optical Communication (ECOC), pp. 1.1-1–1.1-4, Copenhagen, Danmark, September 1981.
    [14] P.W. France, S. F. Carter,C.R.Day, andM.W.Moore, OpticalProperties and Applications in Fluoride Glasses, John Wiley & Sons, Hoboken, NJ, USA, 1989.
    [15] A. Comyns, Fluoride Glasses, John Wiley & Sons, Chichester,UK,1989.
    [16] J. M. Parker, “Fluoride glasses,” Annual Review of Materials Science
    , vol. 19, pp. 21–41, 1989.
    [17] P. Klocek and G. H. Sigel, Infrared Fiber Optics, SPIE, Bellingham Wash, USA, 1989.
    [18] P. France, M. G. Drexhage, J.M. Parker, M. W. Moore, S. F. ruby,” J. Carter, and J. V.Wright, Fluoride Glass Optical Fibers, Blackie. and Son, London, UK, 1990.
    [19] I. Aggarwal and G. Lu, Fluoride Glass Fiber Optics, AcademicPress, Boston, Mass, USA, 1991.
    [20] F. Gan, “Optical properties of fluoride glasses: a review,” Journal of Non-Crystalline Solids, vol. 184, no. 1, pp. 9–20, 1995.
    [21] J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and C. F. Rapp, Infrared Fiber Optics, CRC Press, Boca Raton, Fla, USA, 1998.
    [22] J. A. Hamrrington, Infrared Fibers and Their Applications, SPIE, Bellingham,Wash
    [1] M. Pollnan and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40
    [2] 3.M.D. Shinn, W. A. Sibley, M. G. Drexhage and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B, vol. 27, no 11,pp. 6635-6648, 1983.
    [3] P.A. Krug, M.G. Sceats, G.R. Atkins, S.C. Guy and S.B. Poole, “Intermediate excited-state absorption in erbium-doped fiber strongly pumped at 980 nm,”Optics Letter, vol. 16, no 24, pp. 1976-1978, 1991.
    [4] D. Piehler, D. Craven, N. Kwong, and H. Zarem, “Laser diode pumped red and green upconversion fibre laser,” Electron. Lett., vol. 29, no 21, pp.1857-1858, 1993.
    [5] F. Kaczmarek and J. Karolczak, “Optical pumping of an infrared-to-visible upconversion fiber laser,” Opt. Appl., vol. 35, no. 4, pp. 913-918, 2005.
    [6] F. KACZMAREK and J. KAROLCZAK,”Infrared-to-visible Upconversion in erbium fluoride(ZBLAN :Er3+)optical fiber:competition to between the parasitic 850-nm fluorescence and green fiber laser at 544nm,” Opto-Electron. Rev., 12, no. 2, 2004
    [7] J. Y. Allain, M. Monerie and H. Poignant,” TUNABLE GREEN UPCONVERSION ERBIUM FIBRE LASER,” ELECTRONICS LETTERS 16th January 1992 Vol. 28 No. 2
    [1] M. Pollnan and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40
    [2] 3.M.D. Shinn, W. A. Sibley, M. G. Drexhage and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B, vol. 27, no 11,pp. 6635-6648, 1983.
    [3] S. R. Bullock, B. R. Reddy, P. Venkateswarlu, S. K. Nash-Stevenson, and J. C. Fajardo, “Energy upconversion and spectroscopic studies of ZBLAN:Er3,” Optical and Quantum Electronics, vol. 29, no. 11, pp. 83–92, 1997.
    [4] S. Ivanova and F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for highefficiency solar cells,” J. Opt. Soc. Am. B 26(10), 1930–1938 (2009).

    下載圖示 校內:2014-08-06公開
    校外:2015-08-06公開
    QR CODE