| 研究生: |
詹昀融 Chan, Yun-Jung |
|---|---|
| 論文名稱: |
雷射切割塑膠製程之空氣污染物特徵及暴露評估研究 Characterization and Exposure Assessment of Air Pollution Emissions from Laser Cutting of Plastics in the TFT-LCD Industry |
| 指導教授: |
林達昌
Lin, Ta-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 雷射切割 、塑膠 、鄰苯二甲酸酯類 、多環芳香烴 、懸浮微粒 、醛酮化合物 、酚類化合物 、防護 |
| 外文關鍵詞: | Laser cutting, Plastics, Phthalate Esters, Polycyclic Aromatic Hydrocarbons, Particulate Matter, Carbonyls, Phenols, Protections |
| 相關次數: | 點閱:102 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在於面產產業中,引入雷射切割技術作為切割工具已成為多功能光學膜或相關產業進一步降低成本的重要一步。在過去五年中,由於雷射切割在於成本管理上之有效性與製程生產的可行性皆獲得正面的結果,雷射切割已成為薄膜電晶體液晶顯示器產業(Thin film transistor liquid crystal display, TFT-LCD)中使用的光學膜切割的重要解決方案之一。然而,關於在雷射切割過程中釋放的空氣污染物之危害物質及其特性以及控制措施,卻鮮少被研究與探討。雷射切割過程中釋放的空氣污染物的異味,也直接的使現場作業同仁感到無法忍受,也對於長期暴露於該情況下之健康影響,感到憂慮。迄今為止,使用雷射切割光學膜塑料過程中產生之勞工暴露評估結果及異味物質方面探討,尚未有相關的研究報導。
本研究為第一個探討了雷射切割光學膜塑料過程中所產生之內分泌干擾物(Endocrine Disruptors, EDs)、懸浮微粒(Particulate Matters, PMs)及異味物質之空氣污染物及暴露評估研究。為有效辨別污染物貢獻,本研究先以光學膜生產製造產業中最主要的塑膠膜基材 – 聚碳酸酯(Polycarbonate, PC)與聚對苯二甲酸乙二酯(Polyethylene terephthalate, PET)作為雷射切割研究之主要標的。本研究以鄰苯二甲酸酯(Phthalate Esters, PAEs)和多環芳烴(Polycyclic Aromatic Hydrocarbons, PAHs)作為EDs之污染物之指標污染物;以醛酮化合物(Carbonyl compounds) 酚類化合物(Phenols compounds) 作為異味物質污染物之指標污染物。
研究結果指出,雷射切割塑膠之功率對於其產生之雷射切割空氣污染物(Laser Generated Air Contaminant, LGAC)濃度有顯著的影響。隨著雷射切割功率的提升,所產出之空氣污染物濃度亦隨之增加。在於EDs之探討,於PAE空氣樣本中僅鄰苯二甲酸二(2-乙基己基)酯 (Di(2-ethylhexyl) phthalate, DEHP)於雷射切割PC塑膠膜基材和PET塑膠膜基材的LGAC中被鑑別出。在於低功率(80W)、中等功率(160W)及高功率(240W)的PC和PET雷射切割情況下,氣相之LGAC採樣樣本中皆可偵測出DEHP;但在於LGAC粒狀樣本中,除了雷射切割於低功率條件下切割運作,中等功率及高功率皆無法檢測出DEHP。隨著雷射切割功率的增加,PMs和PAHs的濃度亦增加。本研究亦發現,在雷射切割過程中,PC比PET逸散出更多的DEHP,但雷射切割PET卻比PC釋放更多的PAHs。針對於異味物質之探討,240W之雷射切割PC產生高濃度的酚類化合物(1.56 mg/m3),而從240W之雷射切割PET產生高濃度的醛酮化合物(20.3 mg/m3)。若沒有足夠的保護情況下,距離雷射切割機一公尺之雷射機台作業員,操作240W之功率下切割PET,將暴露到2.74 mg/m3之甲醛,超過2.4毫mg/m3的規範標準。N95型活性炭口罩可以有效地將濃度降至0.07 mg/m3。然而,口罩的研究結果顯示,口罩僅能將濃度降至1.88 mg/m3至2.2 mg/m3之間,若在於口罩與呼吸防護具的選擇錯誤或配戴不適切的情況下,將仍有超過暴露標準之風險。相比之下,有效的安裝局部排氣系統可以有效去除塑料雷射切割製程中所產生的氣體物質達99%。
The introduction of lasers as a cutting tool has become an important step in achieving further cost reductions in the multi-functional optical film industry. During the past five years laser cutting has been identified as one of the solutions for converting and shaping the plastic films used in the Thin Film Transistor Liquid Crystal Display (TFT-LCD) industry due to its positive effects on cost management. However, there has been quite limited information available with regard to the hazards of the air pollutants released during the laser cutting process, and in particular in relation to the real operations in a factory. The fumes produced during laser cutting causes an annoying and often unbearable odor in the working environment. To date, little research has been reported in terms of the worker exposure assessment and odorous substances generated in the process of cutting plastics with lasers.
This study firstly investigated the worker exposure assessment of Endocrine Disruptors (EDs), Particulate Matters (PMs), odorous substances emitted during the laser cutting process and the protection efficiency of the odorous substances when a laser is used to cut polycarbonate (PC) and polyethylene terephthalate (PET), the primary base materials used in optical film industry. Phthalate Esters (PAEs) and Polycyclic Aromatic Hydrocarbons (PAHs) are the representative of the EDs in this research; carbonyls and phenols are the representative of the odorous substances in this research
The results indicate that the power of the laser and type of plastic significantly affect the composition of air pollutants. The concentrations of studied substances increased with the power of the laser. In terms of the EDs, Di(2-ethylhexyl) phthalate (DEHP) of PAEs was identified in the Laser Generated Air Contaminants (LGACs) from both Polycarbonate (PC) and Polyethylene Terephthalate (PET) films. DEHP was detected in the gas-phase LGACs of PC and PET at low, medium and high power (80 W, 160 W, 240 W), but not detected in the particle-phase LGACs of PC and PET, except when the laser was operated at a low power setting. With the laser power increased, the concentrations of PMs and PAHs also increased. This research found that during laser cutting PC released more DEHP than PET, but PET released more PAHs than PC. In terms of the odorous substances, a 240 W laser produced a high concentration of phenols (1.56 mg/m3) from PC and a high concentration of carbonyls (20.3 mg/m3) from PET. Without adequate protection and within a one-meter distance, laser cutting PET at the 240 W power level would expose machine operators to 2.74 mg/m3 of formaldehyde, which exceeds the regulatory standard of 2.4 mg/m3. An N95 valved active carbon respirator can effectively reduce this concentration to 0.07 mg/m3. However, the result of the masks studies could only reduce concentrations to between 1.88 mg/m3 and 2.2 mg/m3, which barely meet the related regulatory standards if the mask selection and wearing is inadequate. In contrast, the installation of local ventilation alone can effectively remove as much as 99% of the gaseous substances produced in the laser cutting of plastics.
Adamczewska, M., J. Siepak, and H. Gramowska. (2000). Studies of levels of polycyclic aromatic hydrocarbons in soils subjected to anthropopressure in the city of Poznań. Pol J Environ Stud. 9: 305–321
ATSDR. (2005). Toxicology profile for polyaromatic hydrocarbons. ATSDR’s Toxicological Profiles on Cd-Rom, CRC Press.
Baek, S. O., and R. Perry. (1996). Distributional characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere. Environ Eng Res. 1: 43–54
Bailey, R.A., Clark H.M., Krause S., Strong R.L. (1978). Atmospheric Chemistry. Chemistry of the Environment. Academic Press, New York.
Bao, A. M., X. M. Man, X. J. Guo, H. B. Dong, F. Q. Wang, H. Sun, Y. B. Wang, Z. M. Zhou, and J. H. Sha. (2011). Effects of di-n-butyl phthalate on male rat reproduction following pubertal exposure. Asian J of Androl. 13: 702–709
Bernabe, D.P., Herrera, R.A.S., Doma, B.T., Fu, M.L., Dong, Y. and Wang, Y.F. (2015) Adsorption of low concentration formaldehyde in air using ethylene-diamine-modified diatomaceous earth. Aerosol Air Qual. Res. 15: 1652–1661.
Bjorseth, A., and T. Ramdahl. (1985). Handbook of polycyclic aromatic hydrocarbons Volume 2: Emission sources and recent progress in analytical chemistry. Am Ind Hyg Assoc J, New York.
Busch, H., Holländer, W., Levsen, K., Schilhabel, J., Trasser, F. J. and Neder, L. (1989). Aerosol formation during laser cutting of fiber reinforced plastics. J Aerosol Sci. 20: 1473-1476.
Calabrese, E.J. and Kenyon, E.M. (1991). Air Toxics and Risk Assessment. Lewis Publishers.
Cenna, A.A. and Mathew, P. (2002). Analysis and prediction of laser cutting parameters of fibre reinforced plastics (FRP) composite materials. Int J Mach Tool Manu. 42: 105–113.
Chao, H.R., Huang, H.L., Hsu, Y.C., Lin, C.W., Lin, D.Y., Gou, Y.Y. Chen, K.C. (2014). Impact of brominated POPs on the neurodevelopment and thyroid hormones of young children in an indoor environment—A Review. Aerosol Air Qual. Res. 14: 1320–1332
Charschan, S.S. (1972). Laser in industry. Van Nostrand Reinhold Company.
Chen, J.L., Yang, W.D., Tsai, P.J., Wang, S.M., Chen, C.H., Wang, I.S. (2013). A sampling and analytical method for simultaneously assessing multiple organic solvent exposures for plastic material printing industry workers. Atmos Environ. 13: 1504–1511
Chen, R., Shi, X., Bai, R., Rang, W., Huo, L., Zhao, L., Long, D., Pui, Y.H. and Chen, C. (2015). Airborne nanoparticle pollution in a wire electrical discharge machining workshop and potential health risks. Aerosol Air Qual. Res. 15: 284–294.
Chou, H.M., Kao, C.C., Chuang, K.P., Lin, C., Shy, C.G., Chen, F.R., Tsai, C.C., Chuang, C.Y., Cheng, Y.C., Chen, C.C, Chao, H.R.. (2016). Levels of polybrominated diphenyl ethers in air-conditioner filter dust used to assess health risks in clinic and electronic plant employees. Aerosol Air Qual. Res. 16: 184–194
Chou, M. S. and Wang, C.H. (2007). Treatment of ammonia in air stream by biotrickling filter. Aerosol Air Qual. Res. 7: 17–32.
Durlak, S. K., and P. Biswas. (1998). Characterization of polycyclic aromatic hydrocarbon particulate and gaseous emissions from polystyrene combustion. Toxicol Pathol. 32: 2301–2307
Eguiazabal, J.I. and Nazabal, J. (1989). Effect of reprocessing on the properties of bisphenol-a polycarbonate. Eur Polym J. 25: 891–893.
Elovaara, E., J. Mikkola, H. Stockmann-Juvala, L. Luukkanen, H. Keski-Hynnilä, R. Kostiainen, M. Pasanen, O. Pelkonen, and H. Vainio. (2007). Polycyclic aromatic hydrocarbon (PAH) metabolizing enzyme activities in human lung, and their inducibility by exposure to naphthalene, phenanthrene, pyrene, chrysene, and benzo(a)pyrene as shown in the rat lung and liver. Arch Toxicol. 81: 169–182
Fenaux JB, Gogal RM, Jr., Ahmed SA. (2004). Diethylstilbestrol exposure during fetal development affects thymus: studies in fourteenmonth-old mice. J Reprod Immunol. 64: 75–90
Fromme, H., T. Küchler, T. Otto, K. Pilz, J. Müller, and A. Wenzel. (2002). Occurrence of phthalates and bisphenol A and F in the environment. Toxicology. 36: 1429–1438
Grause1, G., Tsukada1, N., Hall, W.J., Kameda1, T., Williams, P.T. and Yoshioka, T. (2010). High-value products from the catalytic hydrolysis of polycarbonate waste. Polym. J. 42: 438–442.
Grimmer, G. (1983). Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons. CRC Press, Inc.
Grimmer, G., and F. Pott. (1983). Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons chemistry, occurrence, biochemistry, carcinogenicity. Atmos Environ.
Grosjean, D. (1983). Polycyclic aromatic hydrocarbons in Los Angeles air from samples collected on teflon, glass and quartz filters. CRC Press, Inc.
Guo, H., Zhou, J., Wang, L., Zhou, Y., Yuan, J. and Zhao R. (2015). Seasonal variations and sources of carboxylic acids in PM2.5 in Wuhan, China. Aerosol Air Qual. Res. 15: 517–528.
Haferkampl, H., Alvensleben1, F., Seebaum, D., Goede, M., and Püster, T. (1998). Air contaminants generated during laser processing of organic materials and protective measures. J. Laser Appl. 3: 109–113.
Ham, S., Kim, S., Lee, N., Kim, P., Eom, I., Tsai, P. J., Lee, K., Yoon, C. (2015). Comparison of nanoparticle exposure levels based on facility type—small-scale laboratories, large-Scale manufacturing workplaces, and unintended nanoparticle-Emitting workplaces. Aerosol Air Qual. Res. 15: 1967–1978.
Harry, M. and Francisco, R.R. (2006). Activated Carbon. Elsevier. Health and Welfare Statistics Center, MOHW. http://www.mohw.gov.tw/cht/DOS/DM1.aspx?f_list_no=812, Last Access: 1 Mar 2016.
Hietanen, M., A. Honkasalo, H. Laitinen, L. Lindroos, I. Welling, P. Von Nandelstadh. (1992). Evaluation of hazards in CO2 laser welding and related processes. Ann Occup Hyg. 36: 183–188
Howard, B. (2011). Laser-generated Airborne Contaminants. J Clin Aesthet Dermatol. 4: 56–57
Huang, D. Y., S. G. Zhou, W. Hong, W. F. Feng, and L. Tao. (2013). Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town, South China. Aerosol Air Qual. Res. 71: 327–334
Huang, L. P., C. C. Lee, P. C. Hsu, and T. S. Shih. (2011). The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air. Fertil Steril. 96: 90–94
IARC. (2010). Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures: Volume 92. World Health Organization International Agency For Research On Cancer.
Kevy, S. V., and M. S. Jacobson. (1982). Hepatic effects of a phthalate ester plasticizer leached from poly(vinyl chloride) blood bags following transfusion. Environ Health Persp. 45: 57–64
Kummer, V., J. Masková, Z. Zralý, J. Neca, P. Simecková, J. Vondrácek, and M. Machala. (2008). Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol Lett. 180: 212–221
Kuo, Y.Y., Zhang, H., Gerecke A. C., Wang J. (2014). Chemical Composition of Nanoparticles Released from Thermal cutting of polystyrene foams and the associated isomerization of hexabromocyclododecane (HBCD) diastereomers. Aerosol Air Qual. Res. 14: 1114–1120.
Lange, C. R., and M. Stroup-Gardiner. (2007). Temperature-dependent chemical-specific emission rates of aromatics and polyaromatic hydrocarbons (PAHs) in bitumen fume. Toxicol In Vitro. 4: 72–76
Leach, K.B., Kamens, R.M., Strommen, M.R., and Jang, M. (1999). Partitioning of semivolatile organic compounds in the presence of a secondary organic aerosol in a controlled atmosphere. J Atmos Chem. 33: 241–264.
Lee, W.J., Y. F. Wang, T. C. Lin, Y. Y. Chen, W. C. Lin, C. C. Ku, and J. T. Cheng. (1995). PAH characteristics in the ambient air of traffic-source. Opt Quant Electron. 159: 185–200
Leuchner, M., Ghasemifard, H., Lüpke,M., Ries, L., Schunk, C. and Menzel, A. (2016). Seasonal and diurnal variation of formaldehyde and its meteorological drivers at the GAW site Zugspitze. Aerosol Air Qual. Res. 16: 801–815.
Lewis, R. (1999). Health Issues in Plastics Production and Processing. Occup Med.
Li, C. S., and Y. S. Ro. (2000). Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmos Environ. 34: 611–620
Lippert, J.F., Lacey, S.E., Lopez, R., Franke, J., Conroy, L., Breskey, J., Esmen, N. and Liu, L. (2014). A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure. J Occup Environ Hyg. 11: 69–76.
Liu, K., W. Han, W. P. Pan, and J. T. Riley. (2001). Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system. J Hazard Mater. 84: 175–188
López-Carrillo, L., R. U. Hernández-Ramírez, A. M. Calafat, L. Torres-Sánchez, M. Galván-Portillo, L. L. Needham, R. Ruiz-Ramos, and M. E. Cebrián. (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Persp. 118: 539–544
Lorz, P. M., F. K. Towae, W. Enke, R. Jäckh, and N. Bhargava. (2002). Phthalic acid and derivatives. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH
Lü, H., Tian, J.J., Cai, Q.Y., Wen, S., Liu, Y. and Li N. (2016). Levels and health risk of carbonyl compounds in air of the library in Guangzhou, South China. Aerosol Air Qual. Res. 16: 1234–1243.
Magliozzi, R., R. Nardacci, G. Scarsella, V. Di Carlo, S. Stefanini. (2003). Effects of the plasticiser DEHP on lung of newborn rats: catalase immunocytochemistry and morphometric analysis. Histochem Cell Biol. 120: 41–49
Mastral, A. M., M. Callén, C. Mayoral, and J. Galbán. (1995). Polycyclic aromatic hydrocarbon emissions from fluidized bed combustion of coal. Sci Total Environ. 74: 1762–1766
Nielsen J., B. Akesson, and S. Skerfving. (1985). Phthalate Ester Exposure—Air Levels and Health of Workers Processing Polyvinylchloride. Marcel Dekker Inc. 46: 643–647
Park, J. D., S. S. Habeebu, and C. D. Klaassen. (2002). Testicular toxicity of di-(2-ethylhexyl)phthalate in young Sprague–Dawley rats. Water Res. 171: 105–115
Pierce, J.S., Lacey, S. E., Lippert, J. F., Lopez, R. and Franke, J. E. (2011). Laser-generated air contaminants from medical laser applications: a state-of-the-science review of exposure characterization, health effects, and control. J Occup Environ Hyg. 8: 447-466.
Risner, C. and Cash, S. (1990). The determination of hydroquinone, catechol, phenol and m+p-cresols in indoor air samples by high performance liquid chromatography. Environ. Techn. 11: 345–352.
Roach, R. J., E. A. Raymond, J. R. Tyrer, and B. L. Sharp. (1995). A technique for the indexed assessment of fumes generated by high-power laser processing. Fuel. 27: 685–691
Rothenbacher, K. P., R. Kimmel, S. Hildenbrand, F. W. Schmahl, and P. C. Dartsch. (1998). Nephrotoxic effects of di-(2-ethylhexyl)-phthalate (DEHP) hydrolysis products on cultured kidney epithelial cells. Environ Sci Technol. 17: 336–342
Samy, R., Benjamin C.E., Ronald E.S., (2009). Comparison of nanoparticle filtration performance of NIOSH-approved and CE-Marked particulate filtering facepiece respirators. Ann. Occup. Hyg. 53: 117–128.
Sims, J., Eellwood, P.A., and Taylor, H.J. (1993). Pollutants from laser cutting and hot gas welding of plastics. Ann Occup Hyg. 37: 665–672.
Singh, S., and V. Prakash. (2007). The effect of temperature on PAHs emission from incineration of acrylic waste. J Occup Environ Hyg. 127: 73–77
Sitting, M. (1974). Pollution detection and monitoring handbook. Noyes Data Corp, New Jersey.
Slezakova, K., D. Castro, M.C. Pereira, S. Morais, C. Delerue-Matos, and M.C. Alvim-Ferraz. (2009). Influence of tobacco smoke on carcinogenic PAH composition in indoor PM10 and PM2.5. Atmos Environ. 43: 6376–6382
Smith, T. L., S. T. Merry, D. L. Harris, J. Joe Ford, J. Ike, A. E. Archibong, and A. Ramesh. (2007). Species-speciWc testicular and hepatic microsomal metabolism of benzo(a)pyrene, an ubiquitous toxicant and endocrine disruptor. Environ Monit Assess. 21: 753–758
Takekawa, H., Minoura, H., and Yamazaki, S. (2003). Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmos Environ. 37: 3413–3424.
Tarroni, G., Melandri, C., Zaiacomo, T. D. Lombardi, C. C., and Formignani, M. (1986). Characterization of aerosols produced in cutting steel components and concrete structures by means of a laser beam. J Aerosol Sci. 17: 587-591.
Tharr, D. (1991). Airborne emissions from carbon dioxide laser cutting operations. Appl Occup Environ Hyg. 6:652–654.
Toxicity review for di(2-ethylhexyl) phthalate (DEHP), The US Consumer Product Safety Commission (CPSC). https://www.cpsc.gov/PageFiles/126533/toxicityDEHP.pdf, Last Access: 1 Mar 2016.
Unwin, J., M. R. Coldwell, C. Keen, and J. J. McAlinden. (2012). Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics. Ann Occup Hyg. 57: 399–406
Vainiotalo S., and P. Pfäffli. (1990). Air impurities in the PVC plastics processing industry. Ann Occup Hyg. 34: 585–590
Van Vaeck, L., K. Van Cauwenberghe, and J. Janssens. (1984). The gas-particle distribution of organic aerosol constituents: Measurement of the volatilisation artefact in Hi-Vol cascade impactor sampling. Atmos Environ. 18: 417–430
Villberg, K. and Veijanen, A. (2001). Analysis of a GC/MS thermal desorption system with simultaneous sniffing for determination of off-odor compounds and VOCs in fumes formed during extrusion coating of low-density polyethylene. Anal Chem. 73: 971–977.
Ward, J. M., J. M. Peters, C. M. Perella, and F. J. Gonzalez. (1998). Receptor and nonreceptor mediated organ-specific toxicity of di(2-ethylhexy1) -phthalate (DEHP) in peroxisome proliferator- activated receptorα-null mice. Hum Exp Toxicol. 26: 240–246
Yachigo, S., Sasaki, M., Takahashi, Y., Kojima, F., Takada, T., Okita, T. (1988). Studies on polymer stabilisers: Part I—A novel thermal stabilizer for butadiene polymers. Polym Degrad Stabil. 22: 63–77.
Yang, H.H., Chien, S.M., Lee, H.L., Chao, M.R., Luo, H.W. Hsieh, D.P., and Lee, W.J. (2007). Emission of trans, trans-2, 4-decadienal from restaurant exhausts to the atmosphere. Atmos Environ. 37: 5327–5333.
Yao, Z., Jiang, X., Shen, X., Ye, Y., Cao, X., Zhang, Y. and He, K. (2015). On-road emission characteristics of carbonyl compounds for heavy-duty diesel trucks. Aerosol Air Qual. Res. 15: 915–925.
Zhuanglei, Z. and Maosheng, Y. (2015). Airflow resistance and bio-filtering performance of carbon nanotube filters and current facepiece respirators. J Aerosol Sci. 79: 61–71.