| 研究生: |
趙盈婷 Chao, Ying-Ting |
|---|---|
| 論文名稱: |
橫貫緊固件材質與角度對國產柳杉非膠合集成梁靜曲行為的影響 Influence of dowel fastener's material and angle upon the bending behaviour of non-glue laminated timber made of domestic wood in Taiwan |
| 指導教授: |
葉玉祥
Yeh, Yu-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 非膠合集成梁 、靜曲剛度 、硬木榫 、結構用自攻螺絲 |
| 外文關鍵詞: | Non-glue laminated timber, Bending stiffness, Wooden dowel, Self-tapping screw |
| 相關次數: | 點閱:194 下載:26 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的對象為國產柳杉結構用集成材,主要探討橫貫緊固件材質與鎖入角度對足尺非膠合集成梁靜曲行為的影響。木質非膠合集成構件屬於低加工、可逆之工法,材料可回收再利用,降低對於環境衝擊同時又具備結構性能。集成梁試體尺寸為360 × 30.4 × 15 cm,並根據CNS 11031 配置成14組對稱異等級結構用集成材的木梁構件,配置等級分別為E85-F255、E75-F240、E65-F225及E55-F200。14支梁採用兩種不同的集成工法,其一為膠合工法,採用黏著劑作為集成元間的緊固機制;其二是非膠合工法,使用橫貫緊固件提供集成元間的抗剪強度,本研究的橫貫緊固件選用直徑18.6 mm、長度420 mm的國產柳桉木榫,以及直徑8 mm、長度分別有300 mm與420 mm的自攻螺絲,並以間距100 mm,鎖入角度45˚、90˚、-45˚為配置參數。實驗靜曲剛度藉由足尺的四點抗彎試驗獲得,並與EuroCode 5的有效彎曲剛度公式計算出的理論值相互比較。
實驗結果顯示,以膠合作為剪力連接機制最能有效束制整體梁的變形。以45度的木榫與自攻螺絲緊固件所集成之集成梁,剛度約為同等級E85 - F255膠合梁的28 %與52 %。緊固件的鎖入角度會顯著影響集成梁剛度的大小,以45度的木榫與自攻螺絲集成的集成梁,剛度皆大於90與-45度鎖固的試體。從整體平均剛度來看,木榫試體的剛度高於自攻螺絲試體,而自攻螺絲只有以45度鎖入試體時平均剛度高於木榫試體,這是因為螺牙的抗拉拔強度高於木榫能顯著提升集成元間的抗剪作用。
最後與EuroCode 5計算非膠合梁構件的有效彎曲剛度公式比較,結果顯示理論值高於實驗結果,對於評估非膠合構件的靜曲剛度有明顯的落差,所以為了將評估公式應用於台灣國產材,需要更進一步優化公式。
This study is focused on the influence of dowel fastener's material and angle upon the bending behaviour of non-glue laminated timber element. A full-scale four-point bending test is carried out to evaluate the bending stiffness of various laminated timber. This study configures 14 symmetric heterogeneous-grade laminated beams, which are manufactured according to CNS 11031 and labelled as E85-F255, E75-F240, E65-F225 and E55-F200. Made of Japanese cedar, these beams are composed of 8 laminas with thickness of 3.8 cm and totally possess the dimension of 15 × 30.4 × 360 cm. The 14 specimens comprise three types of shear connections, i.e. adhesive, wooden dowel (WD) and self-tapping screw (STS). Two of the 14 beams are bonded by resin as reference glulam. Six of them are laminated by means of WD whose diameter is 18.6 mm. The rest 6 beams are transversally laminated by STS whose diameter is 8 mm. Both dowel and screw are inserted 90-degree, 45-degree and -45-degree to the laminas with a spacing of 10 cm. A series of four-point bending test demonstrates that the glue-based connection is the most effective way to restrain the deflection of the laminated beams. In terms of non-glue laminated beams, specimants fastened by 45-degree WD and STS reveal higher stiffness than those with 90-degree and -45-degree dowel do. Not only the angle of fasteners but also their materials affect the bending behaiour of the entire beams. The beams composed of WD exhibits higher bending stiffness than STS specimens do. On the other hand, this study appraises the theoretical bending stiffness of the non-glue laminated timber by γmethod based on EuroCode 5 and compare the evaluated data to the experimental results. The comparsion shows that the two analytic methods cannot precisely predict the bending stiffness, whose data are higher than those from testing. This consequence complies with fomer studies. Regarding the relative accuracy, however, the formula base on Tomasi's study is more closer to experiment. In order to apply the analytic model for Taiwanese domestic wood, the equations need to be further optimised.
[1]Haller, P., Helmbach, C., & Yeh, Y. (2013). Bauweisen, Konstruktionen, Tragwerke und Verbindungen im Holzbau: Auswertung des Archives von Julius Natterer Bois Consult: Inst. Für Stahl - und Holzbau, Professur für Ingenieurholzbau und Baukonstruktives Entwerfen.
[2]Institution, B. S. (2004). EN 1995-1:2004+A2:2014, EuroCode 5: Design of Timber Structures – Part 1-1: Common Rules and Rules for Buildings.
[3]Jelušicˇ, P., & Kravanja, S. (2018). Flexural analysis of laminated solid wood beams with different shear connections. Construction and Building Materials, 174, 456–465. doi:10.1016/j.conbuildmat.2018.04.102
[4]Nattere, J. (2011). Informationsdienst Holz: Einfach Bauen mit Holz Späte Werke von Julius Natterer. Landesbeirat Holz Berlin/Brandenburg e.V.
[5]O’Loinsigh, C., Oudjene, M., Ait-Aider, H., Fanning, P., Pizzi, A., Shotton, E., Meghlat, E. M. (2012). Experimental study of timber-to-timber composite beam using welded-through wood dowels. Construction and Building Materials, 36, 245-250. doi:10.1016/j.conbuildmat.2012.04.118
[6]Premrov, M., & Dobrila, P. (2012) Experimental analysis of timber–concrete composite beam strengthened with carbon fibres. Construction and Building Materials, 37, 499-506. doi:10.1016/j.conbuildmat.2012.08.005
[7]Schiro, G., Giongo, I., Sebastian, W., Riccadonna, D., Piazza, M. (2018). Testing of timber-to-timber screw-connections in hybrid configurations. Construction and Building Materials, 171, 170-186. doi: 10.1016/j.conbuildmat.2018.03.078
[8]Standardization, E. C. F. (2010). EN408: Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties.
[9]Tomasi, R., Crosatti, A. & Piazza, M. (2010). Theoretical and experimental analysis of timber-to-timber joints connected with inclined screws. Construction and Building Materials, 24, 1560-1571. doi:10.1016/j.conbuildmat.2010.03.007
[10]大江健介, 古川忠稔, 井上理恵子 與 今井克彦. (2003). 重ね梁による小規模木造人道橋の振動実験, 日本土木学会地震工学論文集, doi:10.11532/proee2003.27.146
[11]稻山正弘(2017)。中大規模木造建築物の構造設計の手引き. 彰國社.
[12]中華民國國家標準. (2014). 結構用集成材 Structural glued-laminated timber. In (Vol. CNS 11031). Taiwan: 中華民國國家標準.
[13]葉民權, 李文雄, & 林玉麗. (2016). 國產柳杉造林木開發結構用集成材之研究. 台灣林業科學, 21(4), 531-546. doi:10.7075/tjfs.200612.0531
[14]葉衣祺(2019)。國產材非膠合集成梁的產製與靜曲行為。成功大學建築碩士論文