| 研究生: |
洪秉哲 Hung, Ping-Che |
|---|---|
| 論文名稱: |
入流密度及高底水位差影響水庫三角洲演化之研究:實驗與數值模擬 Evolution of Reservoir Deltas In Response to Inflow Density and Water Level Change: Experiments and Numerical Model |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 三角洲 、異重流 、物理模型實驗 、數值模擬 、擴散理論 、水庫淤砂 |
| 外文關鍵詞: | delta, hyperpycnal flow, model experiment, numerical model, diffusion theory, reservoir silt |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三角洲常出現於水庫之中,佔據了部分的蓄水空間,其長期之形貌演化對於水庫之庫容量有決定性之影響。在過去的一維三角洲形貌動力學中,以實驗及理論去探討入流密度、水砂比及底床坡度的影響已相當完善。但是針對水位升降結合入流密度對於三角洲之形貌動力學卻相對較少。本研究以一維之物理模型實驗及數值模式探討4種不同系列共16種情境組合。
在實驗的過程中利用間時攝影(time-lapse photograph)以每五秒拍攝一張來觀察當下的三角洲發展形貌,並透過數位影像處理來取得三角洲底床高程資料及移動邊界隨時間的移動軌跡。藉由實驗來取得結果來證實在相同條件下的數值模擬中是否可以完整模擬中實驗形貌以及移動軌跡曲線是否符合發展趨勢。在數值模擬的部分,本論文採用Lai and Capart (2008)之擴散模式,並加以修正可以描述不同水位既入流密度之影響。
研究成果顯示,數值模式能抓到三角洲形貌及Shoreline的實驗發展趨勢。但是目前的數值模式無法完整抓到更複雜的侵蝕與堆積過程。不過,此數值模式對於不同升降水位及入流密度之三角洲形貌演化還是具有高度的潛力與應用價值。
Deltas often appear in reservoirs, occupying part of the water storage space, and their long-term morphological evolution has a decisive impact on the reservoir capacity. In the past one-dimensional delta topography dynamics, it has been quite perfect to explore the effects of inflow density, water-sand ratio and bed slope by experiment and theory. However, the topographic dynamics of the delta for the combination of water level rise and fall is relatively less. This study uses one-dimensional physical model experiments and numerical models to explore 16 scenarios in 4 different series.
After comparing the experiment and numerical simulation, the main parameters required in the model can be determined. Although the current numerical model cannot fully capture the complex erosion and accumulation process, this numerical model still has high potential and application value for the evolution of delta topography with different rising and falling water levels and inflow densities.
Bell, C. M. (2009). Quaternary lacustrine braid deltas on Lake General Carrera in southern Chile. Andean Geology, 36(1), 51-65.
Blaško, D., & Nehyba, S. (2020). Synchrony evolution of two contradictory prograding Gilbert-type deltas at the margins of the foreland basin (case study from the Neogene Western Carpathian Foredeep). Marine and Petroleum Geology, 118, 104407.
Carbonel, P., & Moyes, J. (1987). Late Quaternary paleoenvironments of the Mahakam Delta (Kalimantan, Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 61, 265-284.
Catuneanu, O., Abreu, V., Bhattacharya, J., Blum, M., Dalrymple, R., Eriksson, P., . . . Gibling, M. (2009). Towards the standardization of sequence stratigraphy. Earth-science reviews, 92(1-2), 1-33.
Chavarrías, V., Blom, A., Orrú, C., Martín‐Vide, J. P., & Viparelli, E. (2018). A sand‐gravel Gilbert delta subject to base level change. Journal of Geophysical Research: Earth Surface, 123(5), 1160-1179.
Clare, M. A., Clarke, J. H., Talling, P. J., Cartigny, M. J., & Pratomo, D. (2016). Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth and Planetary Science Letters, 450, 208-220.
Clare, M. A., Le Bas, T., Price, D. M., Hunt, J. E., Sear, D., Cartigny, M. J., . . . Cronin, S. (2018). Complex and cascading triggering of submarine landslides and turbidity currents at volcanic islands revealed from integration of high-resolution onshore and offshore surveys. Frontiers in Earth Science, 6, 223.
Correggiari, A., Cattaneo, A., & Trincardi, F. (2005). The modern Po Delta system: lobe switching and asymmetric prodelta growth. Marine Geology, 222, 49-74.
Dasgupta, S., Buatois, L. A., & Mángano, M. G. (2016). Living on the edge: evaluating the impact of stress factors on animal–sediment interactions in subenvironments of a shelf-margin delta, the Mayaro Formation, Trinidad. Journal of Sedimentary Research, 86(9), 1034-1066.
Gobo, K., Ghinassi, M., & Nemec, W. (2015). Gilbert‐type deltas recording short‐term base‐level changes: Delta‐brink morphodynamics and related foreset facies. Sedimentology, 62(7), 1923-1949.
Hizzett, J. L., Hughes Clarke, J. E., Sumner, E. J., Cartigny, M., Talling, P., & Clare, M. (2018). Which triggers produce the most erosive, frequent, and longest runout turbidity currents on deltas? Geophysical Research Letters, 45(2), 855-863.
Lai, S. Y., & Capart, H. (2007a). Response of hyperpycnal deltas to a steady rise in base level. Paper presented at the River, Coastal and Estuarine Morphodynamics: RCEM 2007, Two Volume Set: Proceedings of the 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Enschede, NL, 17-21 September 2007.
Lai, S. Y., & Capart, H. (2007b). Two‐diffusion description of hyperpycnal deltas. Journal of Geophysical Research: Earth Surface, 112(F3).
Lai, S. Y., & Capart, H. (2009). Reservoir infill by hyperpycnal deltas over bedrock. Geophysical Research Letters, 36(8).
Lai, S. Y. J., Chiu, Y. J., & Wu, F. C. (2019). Self‐similar morphodynamics of Gilbert and hyperpycnal deltas over segmented two‐slope bedrock channels. Water Resources Research, 55(5), 3689-3707.
Lai, S. Y. J., Hsiao, Y. T., & Wu, F. C. (2017). Asymmetric effects of subaerial and subaqueous basement slopes on self‐similar morphology of prograding deltas. Journal of Geophysical Research: Earth Surface, 122(12), 2506-2526.
Lai, S. Y. J., & Wu, F. C. (2021). Two‐Stage Transition From Gilbert to Hyperpycnal Delta in Reservoir. Geophysical Research Letters, 48(14), e2021GL093661.
Lang, J., Sievers, J., Loewer, M., Igel, J., & Winsemann, J. (2017). 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data. Sedimentary Geology, 362, 83-100.
Parker, G., Muto, T., Akamatsu, Y., Dietrich, W. E., & Lauer, J. W. (2008). Unravelling the conundrum of river response to rising sea‐level from laboratory to field. Part I: Laboratory experiments. Sedimentology, 55(6), 1643-1655.
Patruno, S., & Helland-Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth-science reviews, 185, 202-233.
Roberts, H. H., & Sydow, J. (2003). Late Quaternary stratigraphy and sedimentology of the offshore Mahakam delta, east Kalimantan (Indonesia).
Turmel, D., Parker, G., & Locat, J. (2015). Evolution of an anthropic source-to-sink system: Wabush Lake. Earth-science reviews, 151, 227-243.
吳松晏,2016,「水庫三角洲受異重流及抬升水位影響之研究」,成功大學水利及海洋工程研究所碩士論文,1-105。
張家齊,2017,「三角洲受交替入流密度及雙坡度岩盤影響之研究」,成功大學水利及海洋工程研究所碩士論文,1-106。
蕭詠泰,2017,「雙坡度岩盤對Gilbert三角洲發展之研究」,成功大學水利及海洋工程研究所碩士論文,1-106。
邱義叡,2018,「雙坡度岩盤影響異重流三角洲發展之研究」,成功大學水利及海洋工程研究所碩士論文,1-107。
歐岱霖,2020,「單坡一維三角洲受清水流及異重流影響之研究」,成功大學水利及海洋工程研究所碩士論文,1-109。