簡易檢索 / 詳目顯示

研究生: 洪秉哲
Hung, Ping-Che
論文名稱: 入流密度及高底水位差影響水庫三角洲演化之研究:實驗與數值模擬
Evolution of Reservoir Deltas In Response to Inflow Density and Water Level Change: Experiments and Numerical Model
指導教授: 賴悅仁
Lai, Yueh-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 155
中文關鍵詞: 三角洲異重流物理模型實驗數值模擬擴散理論水庫淤砂
外文關鍵詞: delta, hyperpycnal flow, model experiment, numerical model, diffusion theory, reservoir silt
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三角洲常出現於水庫之中,佔據了部分的蓄水空間,其長期之形貌演化對於水庫之庫容量有決定性之影響。在過去的一維三角洲形貌動力學中,以實驗及理論去探討入流密度、水砂比及底床坡度的影響已相當完善。但是針對水位升降結合入流密度對於三角洲之形貌動力學卻相對較少。本研究以一維之物理模型實驗及數值模式探討4種不同系列共16種情境組合。
    在實驗的過程中利用間時攝影(time-lapse photograph)以每五秒拍攝一張來觀察當下的三角洲發展形貌,並透過數位影像處理來取得三角洲底床高程資料及移動邊界隨時間的移動軌跡。藉由實驗來取得結果來證實在相同條件下的數值模擬中是否可以完整模擬中實驗形貌以及移動軌跡曲線是否符合發展趨勢。在數值模擬的部分,本論文採用Lai and Capart (2008)之擴散模式,並加以修正可以描述不同水位既入流密度之影響。
    研究成果顯示,數值模式能抓到三角洲形貌及Shoreline的實驗發展趨勢。但是目前的數值模式無法完整抓到更複雜的侵蝕與堆積過程。不過,此數值模式對於不同升降水位及入流密度之三角洲形貌演化還是具有高度的潛力與應用價值。

    Deltas often appear in reservoirs, occupying part of the water storage space, and their long-term morphological evolution has a decisive impact on the reservoir capacity. In the past one-dimensional delta topography dynamics, it has been quite perfect to explore the effects of inflow density, water-sand ratio and bed slope by experiment and theory. However, the topographic dynamics of the delta for the combination of water level rise and fall is relatively less. This study uses one-dimensional physical model experiments and numerical models to explore 16 scenarios in 4 different series.
    After comparing the experiment and numerical simulation, the main parameters required in the model can be determined. Although the current numerical model cannot fully capture the complex erosion and accumulation process, this numerical model still has high potential and application value for the evolution of delta topography with different rising and falling water levels and inflow densities.

    摘要 I 致謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 一、緒論 1 1-1三角洲分類 1 1-2 Gilbert 三角洲之現地資料 3 1-3異重流三角洲之現地資料 5 1-4影響現地三角洲發展因子 9 1-4-1水位變化影響三角洲發展之現地資料 9 1-4-2交替入流密度影響三角洲發展之現地資料 13 二、理論與數值模擬 16 2-1控制方程式 16 2-2解析解 21 2-3數值模擬 26 2-3-1模式介紹 26 2-3-2模式建立 26 2-3-3模式驗證 27 2-3-4模式的限制 29 三 、實驗 31 3-1實驗方法 31 3-1-1實驗設備配置 31 3-1-2砂材、異重流及清水 39 3-1-3實驗組數與參數設定 41 3-1-4實驗步驟 45 3-1-5問題與解決方案 47 3-2實驗記錄方式及數位影像量測方法 48 3-2-1間時攝影 48 3-2-2尺度轉換及原點設定 50 3-2-3數位影像處理 50 四、實驗之成果與討論 52 4-1實驗現象之觀察與描述 52 4-1-1 Gilbert delta 和 hyperpycnal delta 介紹 52 4-1-2 突然改變水位及交替入流密度對三角洲之影響 53 Run A1-低水位為Gilbert delta,高水位為hyperpycnal delta 54 Run A2-低水位為hyperpycnal delta,高水位為Gilbert delta 57 Run A3-低水位為Gilbert delta,高水位為Gilbert delta 60 Run A4-低水位為hyperpycnal delta,高水位為hyperpycnal delta 63 Run B1-低水位為Gilbert delta,高水位為hyperpycnal delta 66 Run B2-低水位為hyperpycnal delta,高水位為Gilbert delta 69 Run B3-低水位為Gilbert delta,高水位為Gilbert delta 71 Run B4-低水位為hyperpycnal delta,高水位為hyperpycnal delta 74 4-1-3 連續改變水位以及交替入流密度對三角洲之影響 77 Run C1-水位上升速度快,水位下降速度快 78 Run C2-水位上升速度快,水位下降速度慢 80 Run C3-水位上升速度慢,水位下降速度快 82 Run C4-水位上升速度慢,水位下降速度慢 84 Run D1-水位上升速度快,水位下降速度快 86 Run D2-水位上升速度快,水位下降速度慢 88 Run D3-水位上升速度慢,水位下降速度快 90 Run D4-水位上升速度慢,水位下降速度慢 92 4-2改變水位之三角洲底床形貌 94 4-2-1 突然改變水位之三角洲底床形貌 94 4-2-2連續水位變化之三角洲底床形貌 107 4-3改變水位之三角洲移動邊界軌跡 111 4-3-1 突然改變水位之三角洲移動邊界發展之影響 111 第一階段(0~600sec) 113 第二階段(600~1200sec) 113 第三階段(1200~1800sec) 114 第四階段(1800~2400sec) 114 第五階段(2400~3000sec) 114 第六階段(3000~3600sec) 114 4-3-2連續水位變化之三角洲移動邊界發展之影響 115 第一階段(水位快速上升) 117 第二階段(水位慢速下降) 117 第三階段(水位快速上升) 117 第四階段(水位慢速下降) 118 五、實驗與數值模擬之比較 119 5-1參數校正 119 5-1-1 D、Smin對三角洲形貌之發展影響 119 5-1-2 D、Smin之率定及校正 123 5-2三角洲底床形貌與數值模擬之比較 125 5-2-1 抬升水位4公分之交替三角洲之形貌比較 126 5-2-2 抬升水位8公分之交替三角洲之形貌比較 135 5-3三角洲移動邊界軌跡與數值模擬比較 143 5-3-1 突然改變水位之移動邊界比較 143 5-3-2 連續水位變化之移動邊界比較 146 5-4未來三角洲形貌預測 148 六、結論及建議與未來研究方向 151 6-1結論 151 6-2未來研究建議 152 參考文獻 154

    Bell, C. M. (2009). Quaternary lacustrine braid deltas on Lake General Carrera in southern Chile. Andean Geology, 36(1), 51-65.
    Blaško, D., & Nehyba, S. (2020). Synchrony evolution of two contradictory prograding Gilbert-type deltas at the margins of the foreland basin (case study from the Neogene Western Carpathian Foredeep). Marine and Petroleum Geology, 118, 104407.
    Carbonel, P., & Moyes, J. (1987). Late Quaternary paleoenvironments of the Mahakam Delta (Kalimantan, Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 61, 265-284.
    Catuneanu, O., Abreu, V., Bhattacharya, J., Blum, M., Dalrymple, R., Eriksson, P., . . . Gibling, M. (2009). Towards the standardization of sequence stratigraphy. Earth-science reviews, 92(1-2), 1-33.
    Chavarrías, V., Blom, A., Orrú, C., Martín‐Vide, J. P., & Viparelli, E. (2018). A sand‐gravel Gilbert delta subject to base level change. Journal of Geophysical Research: Earth Surface, 123(5), 1160-1179.
    Clare, M. A., Clarke, J. H., Talling, P. J., Cartigny, M. J., & Pratomo, D. (2016). Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth and Planetary Science Letters, 450, 208-220.
    Clare, M. A., Le Bas, T., Price, D. M., Hunt, J. E., Sear, D., Cartigny, M. J., . . . Cronin, S. (2018). Complex and cascading triggering of submarine landslides and turbidity currents at volcanic islands revealed from integration of high-resolution onshore and offshore surveys. Frontiers in Earth Science, 6, 223.
    Correggiari, A., Cattaneo, A., & Trincardi, F. (2005). The modern Po Delta system: lobe switching and asymmetric prodelta growth. Marine Geology, 222, 49-74.
    Dasgupta, S., Buatois, L. A., & Mángano, M. G. (2016). Living on the edge: evaluating the impact of stress factors on animal–sediment interactions in subenvironments of a shelf-margin delta, the Mayaro Formation, Trinidad. Journal of Sedimentary Research, 86(9), 1034-1066.
    Gobo, K., Ghinassi, M., & Nemec, W. (2015). Gilbert‐type deltas recording short‐term base‐level changes: Delta‐brink morphodynamics and related foreset facies. Sedimentology, 62(7), 1923-1949.
    Hizzett, J. L., Hughes Clarke, J. E., Sumner, E. J., Cartigny, M., Talling, P., & Clare, M. (2018). Which triggers produce the most erosive, frequent, and longest runout turbidity currents on deltas? Geophysical Research Letters, 45(2), 855-863.
    Lai, S. Y., & Capart, H. (2007a). Response of hyperpycnal deltas to a steady rise in base level. Paper presented at the River, Coastal and Estuarine Morphodynamics: RCEM 2007, Two Volume Set: Proceedings of the 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Enschede, NL, 17-21 September 2007.
    Lai, S. Y., & Capart, H. (2007b). Two‐diffusion description of hyperpycnal deltas. Journal of Geophysical Research: Earth Surface, 112(F3).
    Lai, S. Y., & Capart, H. (2009). Reservoir infill by hyperpycnal deltas over bedrock. Geophysical Research Letters, 36(8).
    Lai, S. Y. J., Chiu, Y. J., & Wu, F. C. (2019). Self‐similar morphodynamics of Gilbert and hyperpycnal deltas over segmented two‐slope bedrock channels. Water Resources Research, 55(5), 3689-3707.
    Lai, S. Y. J., Hsiao, Y. T., & Wu, F. C. (2017). Asymmetric effects of subaerial and subaqueous basement slopes on self‐similar morphology of prograding deltas. Journal of Geophysical Research: Earth Surface, 122(12), 2506-2526.
    Lai, S. Y. J., & Wu, F. C. (2021). Two‐Stage Transition From Gilbert to Hyperpycnal Delta in Reservoir. Geophysical Research Letters, 48(14), e2021GL093661.
    Lang, J., Sievers, J., Loewer, M., Igel, J., & Winsemann, J. (2017). 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data. Sedimentary Geology, 362, 83-100.
    Parker, G., Muto, T., Akamatsu, Y., Dietrich, W. E., & Lauer, J. W. (2008). Unravelling the conundrum of river response to rising sea‐level from laboratory to field. Part I: Laboratory experiments. Sedimentology, 55(6), 1643-1655.
    Patruno, S., & Helland-Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth-science reviews, 185, 202-233.
    Roberts, H. H., & Sydow, J. (2003). Late Quaternary stratigraphy and sedimentology of the offshore Mahakam delta, east Kalimantan (Indonesia).
    Turmel, D., Parker, G., & Locat, J. (2015). Evolution of an anthropic source-to-sink system: Wabush Lake. Earth-science reviews, 151, 227-243.
    吳松晏,2016,「水庫三角洲受異重流及抬升水位影響之研究」,成功大學水利及海洋工程研究所碩士論文,1-105。
    張家齊,2017,「三角洲受交替入流密度及雙坡度岩盤影響之研究」,成功大學水利及海洋工程研究所碩士論文,1-106。
    蕭詠泰,2017,「雙坡度岩盤對Gilbert三角洲發展之研究」,成功大學水利及海洋工程研究所碩士論文,1-106。
    邱義叡,2018,「雙坡度岩盤影響異重流三角洲發展之研究」,成功大學水利及海洋工程研究所碩士論文,1-107。
    歐岱霖,2020,「單坡一維三角洲受清水流及異重流影響之研究」,成功大學水利及海洋工程研究所碩士論文,1-109。

    下載圖示 校內:2025-08-30公開
    校外:2025-08-30公開
    QR CODE