| 研究生: |
廖一儒 Liao, Yi-Ju |
|---|---|
| 論文名稱: |
化學氣相沉積石墨烯於銅箔上與表面增強拉曼散射之研究 Surface-Enhanced Raman Scattering Based on Graphene-Coated Copper Foils |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 石墨烯 、羅丹明6G 、拉曼光譜 、表面增強拉曼散射 |
| 外文關鍵詞: | Graphene, R6G, Raman, SERS |
| 相關次數: | 點閱:111 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討當羅丹明6G (R6G) 這種高螢光染料附著於銅箔上時,其表面增強拉曼散射的效果。藉由原子力顯微鏡分析與拉曼量測,我們可以推得表面粗糙度與石墨烯,這兩個因素對表面增強拉曼散射個別的增強效果。表面增強拉曼散射是一種偵測低濃度分子的高靈敏度技術,由於表面粗糙度與基材表面的塗層材料都會導致區域性表面電漿共振,使得拉曼訊號增強,我們已經知道這兩個因素都會影響表面增強拉曼散射的效果。為了確認表面粗糙度與塗層材料這兩個因素個別對拉曼訊號的增強所造成的影響,我們藉由不同的化學氣相沉積製程,準備了三種不同的樣品,分別是沒經過退火處理的銅箔、有經過退火但表面沒有合成石墨烯的銅箔,以及表面有合成石墨烯的銅箔。這三塊銅箔的表面粗糙度經過原子力顯微鏡的測量,用方均根值來表示分別為1.65、7.49與1.81奈米。除此之外,我們也以拉曼光譜測量出,每塊銅箔所能量到R6G拉曼訊號的最小R6G濃度,分別是1 × 10⁻³、1 × 10⁻⁴與1 × 10⁻⁶ M,我們稱之為臨界濃度。綜合原子力顯微鏡與拉曼量測的結果,我們可以得到結論:表面粗糙度與石墨烯,對拉曼訊號的偵測分別有10與1000倍的增強效果。
In this research, we have studied the effect of surface-enhanced Raman scattering (SERS) of Rhodamine 6G (R6G), a highly fluorescent dye, adsorbed on copper foils. The impacts of surface roughness and graphene on SERS have been decoupled by utilizing atomic force microscopy (AFM) analysis and Raman measurement. SERS is a high sensitivity technique for the detection of low concentration molecules, and it is well known that surface roughness and coated material may benefit SERS effect since they both can result in the localized surface plasmon resonances (LSPRs) and thus an enhancement in Raman signal. To ensure and decouple the enhancement in Raman signal caused by surface roughness and graphene, respectively, we prepared three samples, a bare copper foil without annealing, a foil experienced thermal treatment without growing graphene, and a foil with graphene coated on it by using different recipes for chemical vapor deposition (CVD) process. The surface roughness of three copper foils was measured by AFM in root mean square (RMS) value as 1.65, 7.49, and 1.81 nm, respectively. In addition, the lowest concentration of R6G to observe a R6G Raman signal (a.k.a. the critical concentration) of each copper foil was measured to be 1 × 10⁻³, 1 × 10⁻⁴ and 1 × 10⁻⁶ M, respectively. Combined with the results of AFM and Raman, we can conclude that the sensitivity of R6G Raman signal is enhanced due to the roughness and graphene by a factor of 10 and 10³, respectively.
[1] M. Fleischmann; P. J. Hendra; A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, vol. 26(2), pp. 163-166, 1974
[2] D. L. Jeanmaire, R. P.Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem., vol. 84(1), pp. 1-20, 1977
[3] M. G. Albrecht, J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc., vol. 99(15), pp. 5215-5217, 1977
[4] Nano Plasmon. [Online]. Available: http://nanoplasmon.com/what-is-lspr/
[5] S. Peiris, J. McMurtrie and H. Y. Zhu, “Metal nanoparticle photocatalysts: emerging processes for green organic synthesis,” Catal. Sci. Technol, vol.6, pp. 320-338, 2016
[6] B. Sharma, R. R. Frontiera. A. I. Henry. E. Ringe. R. P. Van Duyne, “SERS: Materials, applications, and the future,” Materials Today, vol. 15(1-2), pp. 16-25, 2012
[7] X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchel, W. Xiong, Y. S. Zhou, L. Jiang and Y. F. Lu, “Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes,” Nanotechnology, vol. 23, 205702, 2012
[8] S. J. He, K. K. Liu, S. Su, J. Yan, X. H. Mao, D. F Wang, Y. He, L. J. Li, S. P. Song, and C. H. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Analytical Chemistry, vol. 84(10), pp.4622-4627, 2012
[9] Q. Z. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater Interfaces, vol. 116(13), pp. 7249-7254, 2012
[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306(5696), pp. 666-669, 2004
[11] R. S. Shishir, D. K. Ferry and S. M. Goodnick, “Intrinsic mobility limit in graphene at room temperature,” in IEEE Conference on Nanotechnology, pp. 21-24, 2009
[12] D. M. Caughey and R. E. Thomas, “Carrier Mobilities in Silicon Empirically Related to Doping and Field,” Proceedings of the IEEE, vol. 55, pp. 2192-2193, 1967
[13] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., vol. 8(3), pp. 902-907, 2008
[14] Y. S. Touloukian, Thermophysical Properties of Matter, Springer, 1995
[15] R. Murali, Y. Yang, K. Brenner, T. Beck and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett., vol. 94, 243114, 2009
[16] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science, vol. 347, 1246501, 2015
[17] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim., “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, vol. 320, p. 1308, 2008
[18] Y. Iyechika, “Application of Graphene to High-Speed Transistors: Expectations and Challenges,” Science & Technology Trends, vol. 37, pp. 76-92, 2010
[19] U. T. Mello and P. R. Cavalcanti, “A Point Creation Strategy for Mesh Generation Using Crystal Lattices as Templates,” in International Meshing Roundtable, pp. 253-261, 2000
[20] A. Jarosz, M. Skoda, I. Dudek and D. Szukiewicz, “Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells,” Oxidative Medicine and Cellular Longevity, vol. 2016, 5851035, 2016
[21] D. K. Ferry, Semiconductors: Bonds and Bands, vol. 1, IOP Publishing, 2013
[22] C. Kittel, Introduction to Solid State Physics, vol. 8, John Wiley & Sons, 2005
[23] P. R. Wallace, “The Band Theory of Graphite”, Physical Review, vol. 71, 1947
[24] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the K point,” Physical Review B, vol. 74, 2006
[25] J. A. Key and D. W. Ball, Introductory Chemistry, 1st edition, BCcampus, 2012
[26] L.G. Wade Jr., Organic Molecules, 7th edition, Pearson, 2010
[27] P. R. Wallace, “The Band Theory of Graphite,” Physical Review, vol. 71, 1947
[28] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, 2009
[29] D. M. Wu, “Self-Aligned Fabrication of Bilayer Graphene Field Effect Transistors,” graduate theses and dissertations, National Cheng Kung University, 2016
[30] R. W. Messler Jr., The Essence of Materials for Engineers, 1st edition, Jones and Bartlett, 2010
[31] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt and P. Ordejón, “Phonon Dispersion in Graphite,” Physical Review Letters, vol. 92, 2004
[32] M. Lazzeri, C. Attaccalite, L. Wirtz and F. Mauri, “Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite,” Physical Review B, vol. 78, 2008
[33] M.S. Dresselhaus, A. Jorio and R. Saito, “Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy,” Annual Review of Condensed Matter Physics, vol. 1, 2010
[34] J. R. Ferraro, Introductory Raman Spectroscopy, 2nd edition, 2003
[35] N. Colthup, L. Daly and S. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd edition, 1990
[36] J. S. Lupoi, “Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications,” graduate theses and dissertations, Iowa State University, 2012
[37] S. Murcia-Mascaro ́s and J. V. Garci ́a-Ramos, Handbook on the Use of Lasers in Conservation and Conservation Science, COST Office, 2006
[38] L.M. Malarda, M.A. Pimenta, G. Dresselhaus , M.S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, 2009
[39] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Physical Review Letters, 97(18), 2006
[40] Y. C. Chen, “Chemical Vapor Deposition of Graphene and Amorphous Carbon on Copper Thin Films and Sensor Applications Based on Surface Enhanced Raman Scattering ,” graduate theses and dissertations, National Cheng Kung University, 2016
[41] Y. Iyechika, “Application of Graphene to High-Speed Transistors: Expectations and Challenges,” Science & Technology Trends Quarterly Review, 037, 2010
[42] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nature nanotechnology, vol. 3, 2008
[43] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, 2009
[44] M. Kalbac, O. Frank, L. Kavan, “The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition,” Carbon, vol. 50, 2012
[45] SEM, Center for Micro/Nano Science and Technology. [Online]. Available: http://cmnst.ncku.edu.tw/files/15-1023-155701,c17606-1.php?Lang=zh-tw
[46] HR-TEM, Center for Micro/Nano Science and Technology. [Online]. Available: http://cmnst.ncku.edu.tw/files/15-1023-159102,c17606-1.php?Lang=zh-tw
[47] Bruker Dimension ICON, Center for Micro/Nano Science and Technology. [Online].Available:
http://cmnst.ncku.edu.tw/files/15-1023-147068,c17418-1.php?Lang=zh-tw
[48] Thermal-CVD, Center for Micro/Nano Science and Technology. [Online]. Available: http://cmnst.ncku.edu.tw/files/15-1023-151075,c17606-1.php?Lang=zh-tw
[49] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor and Y. Zhang, “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces,” Nano Lett., vol. 10(5), pp. 1542-1548, 2010
[50] C.Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. Zhang, S. Y. Lin, Z. Y. Juang, Y. L. Zhong, F. R. Chen, and L. J. Li, “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition,” Nano Lett., vol. 11(9), pp. 3612-3616, 2011
[51] H. Kim, I. Song, C. Park, M. Son, M. Hong, Y. Kim, J. S. Kim, H. J. Shin, J. Baik, and H. C. Choi, “Copper-Vapor-Assisted Chemical Vapor Deposition for High-Quality and Metal-Free Single-Layer Graphene on Amorphous SiO2 Substrate,” ACS Nano, vol. 7(8), 6575-6582, 2013
[52] Y. Song, J. Liu, L. Quan, N. Pan, H. Zhu, and X. Wang, “Size Dependence of Compressive Strain in Graphene Flakes Directly Grown on SiO2/Si Substrate,” J. Phys. Chem. C, vol. 118(23), pp. 12526-12531, 2014
[53] C. Yang, C. Zhang, G. Zhang, H. M. Li, R. J. Ma, S. C. Xu, S. Z. Jiang, M. Liu and B. Y. Man, “Low-temperature facile synthesis of graphene and graphene-carbon nanotubes hybrid on dielectric surfaces,” Materials Research Express, vol. 1(1), 2014
[54] Advances in Graphene Science. [Online]. Available: https://www.intechopen.com/ books/advances-in-graphene-science/synthesis-and-biomedical-applications-of-graphene-present-and-future-trends
[55] AZoM. [Online]. Available: https://www.azom.com/article.aspx?ArticleID=11975
[56] Y. C. Shin, J. Kong, “Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition,” Carbon, vol. 59, pp. 439-447, 2013
[57] M. J. Hou, X. Zhang, X. Y. Cui, C. Liu, Z. C. Li and Z. J. Zhang, “Preparation of SiO2@ Au nanorod array as novel surface enhanced Raman substrate for trace pollutants detection,” Chinese Physics B, vol. 24(3), 034203, 2015