簡易檢索 / 詳目顯示

研究生: 林宏誠
Lin, Hong-Cheng
論文名稱: 基於時空特徵之HEVC編碼單元預測方法
A Spatiotemporal Content-Based CU Size Prediction Method for HEVC
指導教授: 陳培殷
Chen, Pei-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 48
中文關鍵詞: 高效率視訊編碼快速編碼單元決策深度範圍預測
外文關鍵詞: HEVC, fast CU decision, depth range prediction
相關次數: 點閱:72下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高效率視訊編碼 (High Efficient Video Coding,簡稱HEVC) 為次世代視訊壓縮編碼演算法。相較於前代之高階影片編碼 (Advanced Video Coding,簡稱AVC),HEVC有更為彈性的影像編碼分割方式以及新增加的分割模式,因此帶來較高的壓縮比率。然而隨著壓縮比率的提升,同時計算複雜度也隨之上升,編碼時所消耗的時間相當可觀。為了讓HEVC可以在高壓縮率下,減少編碼時間與獲得較好的峰值信噪比 (Peak Signal to Noise Ratio,簡稱PSNR),以及較少的Bjøntegaard delta bit rate (BDBR)損失,我們需要在HEVC編碼器中加入較有效率的加速演算法改進。在傳統的HEVC編碼器中,每個編碼樹單元 (Coding Tree Unit,簡稱CTU) 中的編碼單元 (Coding Unit,簡稱CU) 會以Zig-Zag方式逐次掃描並判斷其是否為最適切割大小,其中計算深度由大而小,並以遞迴方式找出最佳分割模式,而此過程為HEVC中較為耗時之部分。因此,目前已有許多研究針對此部分進行改進並可加速編碼過程。
    本論文提出了快速編碼單元決策法,包含自適應性深度範圍預測 (ADRP),與基於絕對差值和之區域檢測 (SRI),以及基於紋路複雜度之中止機制 (TST)。ADRP利用欲編碼之CTU對於其周遭與前一張畫面之CTU進行切割深度預測,並得到當前CTU之切割深度範圍;由於ADRP在特定情況下會預測錯誤,利用SRI可改善其問題,提升編碼效率與品質;除此之外,TST可針對區域像素複雜度決定是否提前終止切割過程。實驗結果顯示,與原始HEVC編碼相比,在Low-Delay配置下可省下60.89%時間,而在Random-Access配置下可節省66.77%,各伴隨0.41%與0.98%的BDBR損耗,以及-0.01與-0.02的BDPSNR損耗。

    The high efficiency video coding (HEVC) standard is a novel algorithm of video compression. Different from the superior compression algorithm, which is advanced video coding (AVC), the flexible partitioning scheme and increased prediction modes of HEVC provides better efficiency for encoding. For this reason, HEVC improves almost 50% in compression ratio. However, HEVC brings more computational complexity with the enhancing of compression performance, and spends much more time on encoding. Therefore, we need an efficient method to reduce the encoding time while maintaining high compression ratio and less Bjøntegaard delta bit rate (BDBR) loss. In conventional HEVC encoder, coding units (CUs) in a coding tree unit (CTU) are traversing from top to bottom in recursion. This process is applied for determine the optimal splitting mode and occupies a lot of time in encoding.
    In this dissertation, we provide a fast CU decision to skip the unnecessary calculation. The architecture of the proposed method includes adaptive depth-range prediction (ADRP), SAD-based region inspection (SRI) and texture-aware splitting termination (TST). Experimental results show that the proposed method can speed up 60.89% in low-delay and 66.77% in random-access compared to HEVC original encoder with 0.41 and 0.98 BDBR penalty, meanwhile accompanying with -0.01 and -0.02 BDPSNR penalty.

    摘要 I Abstract II 誌謝 III Contents IV Table Captions VI Figure Captions VII Chapter 1. Introduction 1 1.1 Motivation 2 1.2 Related Works 3 1.3 Contribution 5 1.4 Organization 5 Chapter 2. Background 6 2.1 HEVC architecture 6 2.1.1 Coding Unit (CU) 7 2.1.2 Prediction Unit (PU) 8 2.1.3 Transform Unit (TU) 9 2.2 Prediction Mode 10 2.2.1 Intra Prediction 10 2.2.2 Inter Prediction 11 2.3 De-blocking Filter 12 2.4 Encoding Flow 13 2.5 Rate-distortion Cost 14 Chapter 3. Proposed Method 15 3.1 Adaptive Depth-Range Prediction (ADRP) 15 3.2 SAD-based Region Inspection (SRI) 20 3.3 Texture-aware Splitting Termination (TST) 26 3.3.1 De-blocking Filter 27 3.3.1.1 Block Effect 27 3.3.1.2 Block Boundary 28 3.3.1.3 Boundary Strength 29 3.3.1.4 Local Adaptivity and Filter Decision 30 3.3.2 CU Splitting Determination by TST 31 3.4 Flowchart 34 Chapter 4. Results 36 4.1 Test Conditions 36 4.2 Results of the Proposed Individual Method 37 4.3 Result of the Proposed Overall Method 40 Chapter 5. Conclusion 45 References 46

    [1] G. J. Sullivan, J. Ohm, Woo-Jin Han, T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard”, IEEE Trans. Circuits Syst. Video technol., vol. 22, no. 12, pp. 1649 – 1668, Dec. 2012.
    [2] T. Wiegand, G. J. Sullivan ,G. Bjøntegaard, “Overview of the H.264/AVC Video Coding Standard”, IEEE Trans. Circuits Syst. Video technol., vol. 13, no. 7, pp. 560 – 570, Jul. 2003.
    [3] A. Ortega, K. Ramchandran, “Rate-distortion methods for image and video compression”, IEEE Signal Processing Society, vol. 15, no. 6, pp. 23 – 50, Nov. 1998.
    [4] A. Jiménez-Moreno, E. Martínez-Enríquez, and F. Díaz-de-María, “Complexity Control Based on a Fast Coding Unit Decision Method in the HEVC Video Coding Standard”, IEEE Trans. Multimedia, vol. 18, no. 4, pp. 563 – 575, Apr. 2016.
    [5] I. Zupancic, S. G. Blasi, E. Peixoto, and E. Izquierdo, “Inter-prediction Optimizations for Video Coding Using Adaptive Coding Unit Visiting Order”, IEEE Trans. Multimedia, vol. 18, no. 9, pp. 1677 – 1690, Sept. 2016.
    [6] J. Xiong, H. Li, F. Meng, S. Zhu, Q. Wu, and B. Zeng, “MRF-Based Fast HEVC Inter CU Decision With the Variance of Absolute differences”, IEEE Trans. Multimedia, vol. 16, no. 8, pp. 2141 – 2513, Dec. 2014.
    [7] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, “An Effective CU Size Decision Method for HEVC Encoders”, IEEE Trans. Multimedia, vol. 15, no. 2, pp. 465 – 470, Feb. 2013.
    [8] J. Xiong, H. Li, F. Meng, Q. Wu, and King Ngi Ngan, “Fast HEVC Inter CU Decision Based on Latent SAD Estimation”, IEEE Trans. Multimedia, vol. 17, no. 12, pp. 2147 – 2159, Dec. 2015.
    [9] L. Shen, Z. Zhang, and Z. Liu, “Adaptive Inter-Mode Decision for HEVC Jointly Utilizing Inter-Level and Spatiotemporal Correlations”, IEEE Trans. Circuits Syst. Video technol., vol. 24, no. 10, pp. 1709 – 1722, Oct. 2014.
    [10] S. Ahn, B. Lee, and M. Kim, “A Novel Fast CU Encoding Scheme Based on Spatiotemporal Encoding Parameters for HEVC Inter Coding”, IEEE Trans. Circuits Syst. Video technol., vol. 25, no. 3, pp. 422 – 435, Mar. 2015.
    [11] J. Zhang, B. Li, and H. Li, “An Efficient Fast Mode Decision Method for Inter Prediction in HEVC”, IEEE Trans. Circuits Syst. Video technol., vol. 26, no. 8, pp. 1502 – 1515, Aug. 2016.
    [12] Q. Hu, X. Zhang, Z. Shi, and Z. Gao, “Neyman-Pearson-Based Early Mode Decision for HEVC Encoding”, IEEE Trans. Multimedia, vol. 18, no. 3, pp. 379 – 391, Mar. 2016.
    [13] G. Bjøntegaard, “Calculation of average PSNR differences between RD-Curves,” ITU-T SG16 Q.6 Document, VCEG-M33,Austin,US, Apr. 2001.
    [14] J. Sole, R. Joshi, N. Nguyen, T. Ji, M. Karczewicz, G. Clare, F. Henry, and A. Due´nas, “Transform Coefficient Coding in HEVC”, IEEE Trans. Circuits Syst. Video technol., vol. 22, no. 12, pp. 1765 – 1777, Dec. 2012.
    [15] A. Norkin, G. Bjøntegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson, M. Zhou, and G. V. der Auwera, “HEVC Deblocking Filter”, IEEE Trans. Circuits Syst. Video technol., vol. 22, no. 12, pp. 1746 – 1754, Dec. 2012.
    [16] C.-M. Fu, E. Alshina, A. Alshin, Y.-W. Huang, C.-Y. Chen, C.-Y. Tsai, C.-W. Hsu, and S.-M. Lei, “Sample Adaptive Offset in the HEVC Standard”, IEEE Trans. Circuits Syst. Video technol., vol. 22, no. 12, pp. 1755 – 1764, Dec. 2012.
    [17] ISO/IEC JTC1/SC29/WG11, Joint Call for Proposals on Video Compression Technology, in 91st MPEG Meeting, No. N11113. Kyoto, Japan, Apr. 2010.
    [18] Frank Bossen, “Common test conditions and software reference configurations”, JCTVC-L1100, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 12th Meeting: Geneva, CH 14 – 23 Jan. 2013.

    下載圖示 校內:2022-07-06公開
    校外:2022-07-06公開
    QR CODE