簡易檢索 / 詳目顯示

研究生: 莊登為
Zhuang, Deng-wei
論文名稱: 界面聚合具分散性之聚苯胺-聚(磺酸苯乙烯)水溶液
Dispersible polyaniline in aqueous poly(styrene sulfonic acid) via interfacial polymerization
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 70
中文關鍵詞: 聚苯胺分散性聚(磺酸苯乙烯)
外文關鍵詞: polyaniline, dispersible, poly(styrene sulfonic acid)
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文主要是探討利用界面聚合方式,分散聚苯胺在聚(磺酸苯乙烯)水溶液中。因為界面聚合的合成方法可以減少它二次聚合的產生提升它的分散性,且聚(磺酸苯乙烯)它本身的結構是具有一親水性的磺酸根離子和疏水性的乙烯基長鏈,藉此達到分散的效果。
    實驗內容主要探討苯胺單體/聚(磺酸苯乙烯)( ANI/PSS )莫耳比例對於聚苯胺分散性的影響。
    首先先固定苯胺單體的莫耳數為0.1 mole,且ANI/PSS莫耳比例分別為4, 2, 1, 4/5, 1/2, 1/4, 1/8。另外改變作一個對照,改變固定苯胺單體的莫耳數為0.05 mole,而ANI/PSS莫耳比例為1/16。由粒徑分析儀可以發現到當ANI/PSS莫耳比例為1∼4時跟粒徑大小會呈正比關係,比例為1/16∼4/5時,其PANI-PSS粒徑大小為7∼20 nm 左右,當PSS增加顯示有分散的效果,由化學電子光譜和紅外線光譜可觀察到PANI的摻雜程度氧化程度的變化,結果顯示分散性較佳的PANI-PSS會有較高的摻雜程度以及氧化程度。當在ANI/PSS為4:1時,PANI-PSS具有最大的導電度。
    另一部分主要為探討氧化劑對PANI-PSS的物性影響,而所使用的氧化劑為過硫酸銨(APS),而固定苯胺單體為0.1 mole改變氧化劑比例。當氧化劑和苯胺單體莫耳比例為1/2時,其導電度會有一最大值。氧化劑和苯胺莫耳比例到最大值(1/2)之前,其關係跟導電度成正比,而比例大於1/2時會呈反比。這在莫耳比例過量時,會造成高分子共軛長度減短,原因可能是因為過氧化導致產生副產物所造成的。在化學電子光譜來分析PANI-PSS的特徵,主要用來分析其副產物的多寡。

    Abstract
    The main objective of the present investigation is to discuss the dispersion of polyaniline in aqueous poly(styrene sulfonic acid) via interfacial polymerization. The polymerization technique of this PANI composite in the presence of sulfonated polystyrene allows the growth of PANI nanoparticles embedded in the polymerized sulfonated host.
    First, PANI particles are dispersed by interfacial polymerization of ANI in poly(styrene sulfonic acid)(PSS) by varying the mole ratio of ANI and PSS mole ratio. The mole ratios of ANI/PSS are 4, 2, 1, 4/5, 1/2, 1/4, 1/8, 1/16. Nano Zetasizer’s results show that the PANI particle size is from 7 to 20 nanometer when the mole ratio is from 1/16 to 4/5. When the mole ratio is from 1 to 4, the relation between PANI particle and mole ration is positive. X-ray photoelectron spectroscopy and FTIR spectroscopy were employed to validate the proposed coupling reaction by monitoring the doping level and oxidant state of PANI-PSS. The results show that the higher the ANI/PSS ratio is, the higher the doping level and the oxidant state in the PANI-PSS composite are. When the mole ratio of PSS to aniline monomer is 4:1, the conductivity property shows a maximum value.
    Second, the discussion of the article is the changes of the proportion of the oxidant is how to influence the PANI-PSS. When the oxidant/aniline mole ratio is 1/2, there is the maximum conductivity. When the oxidant/aniline mole ratio of the PANI-PSS composite is less than the optimum, the more the oxidant concentration is, the more the conductivity is. However, when the oxidant/aniline mole ratio is more than the optimum, there is a decrease in the conductivity. The excess of the oxidant causes the shorter conjugation length and this situation decreases the conductivity. Furthermore, this may cause the side products. On the other hand, the oxidant of aniline is under the optimun when there is a low concentration of oxidant. The X-ray photoelectron spectroscopy analyze the characteristics of PANI-PSS. It is used to validate the proposed coupling reaction by monitoring the side products.

    目錄 中 文 摘 要…………………………………………………………………………Ⅰ 英 文 摘 要…………………………………………………………………………Ⅱ 致 謝……………………………………………………………………………..Ⅳ 目錄…………………………………………………………………….…………….Ⅴ 表目錄………………………………………………………………………………..Ⅶ 圖目錄……………………………………………………………………………......Ⅷ 第一章 緒論……………………………………………………………………….1 1-1 前言………………………………………………………………………...1 1-2 導電性高分子……………………………………………………………...3 1-3 聚苯胺…....………………………………………………………………...6 1-3-1 聚苯胺的源起……………………………………………………..6 1-3-2結構與聚合機制.……………………………………...……………8 1-3-3聚苯胺的摻雜….…………………………………….……………..8 1-4 導電性高分子之合成方法………………………………………….…….10 1-4-1 電化學聚合...………………………………………………..…....10 1-4-2 化學聚合………………………………………………………….11 1-4-2-1 單相化學聚合…………………………………………..11 1-4-2-2 兩相化學聚合……………………………….………….13 1-5 研究動機與大綱…………………………………………….…….………13 1-5-1 研究動機………………………………………………………….13 1-5-2 大綱……………………………………………………………….14 第二章 實驗部份………………………………………………………..……….22 2-1 藥品與裝置……………………………………………………...….22 2-2合成導電性高分子PANI-PSS……………………………..………22 2-3粒徑分析儀 …………………………..……………………………23 2-4膜穩定性測試………………….……..………………………….....24 2-5紫外光/可見光光譜…………………………..……………………24 2-6傅利葉紅外線光譜…………………………..…………………..…24 2-7化學分析電子光譜(XPS) ……..…………………..……………...24 2-8掃描式電子顯微鏡(SEM) ………………………………………..25 2-9熱重分析儀…………………………..…………………………….25 2-10四點探針…………………………..……………………………...25 第三章 結果與討論………………………………………….………………….28 3-1 高分子粒徑變化探討……………………………………………...28 3-2 膜穩定性…………………………………………………………...28 3-3 表面型態………………………………………………………...…29 3-4 紫外光/可見光光譜……………...……………………………..….30 3-5 化學元素分析…………………………………………………..….31 3-6 傅利葉紅外線光譜 ………..………………………………..…….33 3-7 導電度測試……………………………..……………………….…34 3-8 熱穩定性…………………………………………………….…..…35 第四章 結論與建議……………………………………………………………...63 4-1 結論………………………………………………………………….....63 4-2 未來工作建議………………………………………………………….65 參考文獻……………………………………………………………………………..66 自述…………………………………………………………………………………..70

    參考文獻
    [1] C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gua, A.G.. MacDiarmid, Phys.RevLett.,39,1098(1977)
    [2] A. Bhattacharga, A. De, S.N. Bhattacharga, Synth.Met.,65, 35 (1994).
    [3] H. Yamato, W. Wernet, M. Ohwa, B. Rotinger, Synth.Met.,55-57, 3550
    (1993).
    [4] A.J. Heeger, Synth.Met.,57, 3471 (1993).
    [5] A.R. Hopkins, D.D. Sawall, R.M. Villahermosa, R.A. Lipeles, Thin Solid
    Films,469-470(2004)
    [6] R. J. Waltman, J. Bargon, A.F. Diaz, J. Phys. Chem.,87,1459 (1983).
    [7] L.W. Shacklette, H. Eckhardt, R.R. Chance, R.H. Banghman, J. Chem. Soc.
    [8] A. Bhattacharga, A. De, S. N. Bhattacharga, Synth. Met.,65, 35 (1994)
    [9] H. Yamato, W. Wernet, M. Ohwa, B. Rotinger, Synth. Met., 55, 3550 (1993).
    [10] J. Roncali, J. Chem. Rev., 92, 711 (1992).
    [11] S. Hotta, M. Soga, N. Sonoda, Synth. Met.,24, 233 (1988).
    [12] F. Garnier, G. Tourillon, M. Gazard, J.C. Dubois, J. Electroanal. Chem., 148, 299 (1983).
    [13] M. Satoh, K. Kaneto, K. Yoshino, J. Chem. Soc.,1629-1630 (1984).
    [14] M. Kobayashi, N. Colaneri, M. Boysel, F. Wudl, A.J. Heeger, J. Chem. Phys.,82, 5717 (1985).
    [15] J.R. Ellis in T. A. Skotheim (cd.), Handbook of conducting polymer, Vol. 1, Marcel Dekker, New York, 1986.
    [16] G. Boara, M. Sparpaglione, Synth. Met.,72, 135 (1995).
    [17] T. P. McAndrew, TRIP.,5, 7 (1997).
    [18] Y. Cao, P. Smith, A.J. Heeger, Syn. Met., 48, 91 (1992).
    [19] J.R. Ferraro, J.M. Williams,“Introduction to Synthetic Electrical Conductors”, Academic press.
    [20] A. Berin, Electrical and optical polymer systems, 47 (1998).
    [21] A.F. Diaz, J.A. Logan, J. Electroanal. Chem.,111, 111 (1980).
    [22] R. DeSurville, M. Jozefowicz, L. Yu, J. Perichon, R. Buvet, Electrochim. Acta.,13, 1451 (1968).
    [23] J. Yue, A.J. Epstein, Macromolecules.,24, 4449 (1991).
    [24] M. Lapkowski, E.M. Genies, J. Electroanal. Chem., 279, 157 (1990).
    [25] H. Yoon, B.S. Jung, H. Lee, Synth. Met., 41, 699 (1991).
    [26] D.M. Mohilner, R.N. Adams, W.J. Argersinger, J. Am. Chem. Soc.,84, 3618 (1962).
    [27] J. Bacon, R.N. Adams, J. Am. Chem. Soc.,90, 6596 (1968).
    [28] Y. Wei, K.F. Hsueh, G.W. Jang, Macromolecules,27,518-525(1994).
    [29] A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L. D.Somasiri, W. Wu, S.I. Yaniger, Mol. Liqu. Cryst.,121, 173 (1985).
    [30] T. Hjertberg, W.R. Salanek, I. Lundstrom, N.L.D. Somasiri, A.G.
    MacDiarmid, J. Polym. Sci., Polym. Lett., 23, 503 (1985).
    [31] J. Preiza, I. Lundstrom, T. Skotheim, J. Electrochem. Soc.,129,1685 (1982).
    [32] SL. Mu, D.H. Sun, Synth. Met., 41-43, 3085 (1991).
    [33] H.J. Yang, A.J. Bard, J. Electroanal. Chem.,369, 193 (1994).
    [34] D.E. Stilwell, S.M. Park, J. Electrochem. Soc.,135, 2254 (1988).
    [35] S.L. Mu, J.Q. Kan, Electrochim. Acta, 41, 1593 (1996).
    [36] T.J. Kemp, P. Moore, G.R. Quick, J. Chem. Res.,1981, 301 (1981).
    [37] A. Malinauskas, R. Holze, Electrochim. Acta,44, 2613 (1999).
    [38] A. Malinauskas, R. Holze, B. Besenges., Phys. Chem., 101, 1859 (1997).
    [39] A. Malinauskas, R. Holze, Electrochim. Acta, 43, 2413 (1998).
    [40] S.A. Chen, C.C. Tsai, Macromolecules,26, 2234 (1993).
    [41] Y. Wei, J. Tan, A.G. MacDiarmid, J.G. Masters, A.L. Smith, D. Li, JCSCC 7, 552 (1994).
    [42] E.M. Genies, M. Lapkowski, J. Electroanal. Chem., 236, 189 (1987).
    [43] K. Sasaki, M. Kaya, J. Yano, A. Kitani, A. Kunai, J. Electroanal.
    Chem., 215, 401 (1986).
    [44] Y. Wei, X. Tang, Y. Sun, W.W. Focke, J. Polym. Sci. Chem. Edn., 27,
    2385 (1989).
    [45] T. Kobayashi, H. Yoneyama, H. Tamura, J. Electroanal. Chem., 177, 281 (1984).
    [46] M. Kancko, H. Nagamura, T. Shimora, Makromol. Chem., Rapid
    Commun., 8, 179 (1987).
    [47] Y. Cao, A. Andreatta, A.J. Heeger, P. Smith, Polymer, 30, 2305 (1989).
    [48] A.G. MacDiarmid, S.K. Manohar, J.C. Masters, Y. Sun, H. Weis, A.
    J. Epstein, Synth. Met., 41-43, 621 (1991).
    [49] K. Tzou, R. V. Gregory, Synth. Met.,47, 267 (1992).
    [50] Y. Wei, G.W. Jang, C.C. Chan, J. Polym. Sci. Part-C. Polymer
    Letters, 28, 219 (1990).
    [51] Y. Wei, K.F. Hsueh, G.W. Jang, Polymer,35, 3572 (1994).
    [52] N. Gospodinova, L. Terlemezyan, P. Mokreva, K. Kossev, Polymer,
    34, 2434 (1993).
    [53] N. Gospodinova, P. Mokreva, L. Terlemezyan, Polymer, 36, 3585
    (1995).
    [54] J. Huang, R.B. Kaner, J.AM.Chem.Soc., 126, 851-855(2004)
    [55] J. Huang, R. B. Kaner, Angew.Chem.Int.Ed., 43,
    5817–5821(2004)
    [56] J.Huang, R.B. Kaner, Chem.Commun., 367–376(2006)
    [57] 張家榮 德芮克國際股份有限公司

    下載圖示 校內:2008-07-18公開
    校外:2008-07-18公開
    QR CODE