| 研究生: |
張哲禎 Chang, Che-Chen |
|---|---|
| 論文名稱: |
氯化鋅離子液體中以無模板方式利用脈衝電位電沉積節狀之鈷鋅線 Pulse Potential Electrodeposition of Diameter Modulated Co-Zn Wires from a Chlorozincate Ionic Liquid without the Use of Template |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 離子液體 、可調控直徑節線 、脈衝電位電沉積 、鈷鋅合金 |
| 外文關鍵詞: | Ionic liquid, Diameter-modulated wires, Pulse potential electrodeposition, Co-Zn alloy |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文探討在40-60mol%氯化鋅-氯化-1-乙基-3-甲基咪唑(zinc chloride-1-ethyl-3-methylimidazolium chloride,ZnCl2-EMIC)離子液體中添加氯化亞鈷(Cobalt(II) chloride)的電化學行為,並分別利用定電位、脈衝電位、定電流與脈衝電流電沉積鋅鈷合金。在定電位沉積所得的鍍層會依沉積電位、添加的氯化亞鈷濃度影響鍍層中鋅與鈷的相對比例,而電鍍時溫度的不同則產生不同形貌,溫度由70oC提高至90oC時會由線狀結構轉變為顆粒狀結構。脈衝電位沉積方面,利用脈衝電位電沉積成功地製備出具有節線形貌的線狀結構,並藉由調控兩脈衝電位EN、EP與其停留時間控制節點大小及節點與節點之間的距離,所製備出的節線結構以掃描式電子顯微鏡(SEM)觀察鍍層表面形貌、穿透式電子顯微鏡(TEM)觀察其內部結構、EDX-Mapping與Line-scan分析鍍層中鈷鋅分佈、化學分析電子光譜儀(XPS)探討其化學組成,並以超導量子干涉儀(VSM)探討磁滯曲線的變化。定電流沉積方面出現電位震盪的現象且由SEM觀察鍍層中的線狀結構具有一節一節的特徵,另外利用脈衝電流電沉積探討其形貌變化並與脈衝電位電沉積法比較。
In this study, the electrochemical behaviors of CoCl2 were investigated by cyclic voltammetry in 40-60 mol% ZnCl2-EMIC ionic liquid and Co-Zn alloys were electrodeposited by pulse potential electrodeposition. For pulse potential electrodeposition, Diameter-modulated Co-Zn wires consisting of beads which are linked by stems can be prepared from a 40–60 mol% ZnCl2-EMIC ionic liquid containing 5.0 mol% CoCl2 at 70◦C without the use of a template. The effects of pulse potential and pulse duration on the physical dimensions of the Co-Zn wires such as the diameters of the stem and bead as well as the spacing between the beads were investigated by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM). Also, element distribution in the deposits were investigated by EDX-Mapping and Line-scan. It is concluded that the sizes of the segmented Co-Zn wires can be tuned by changing the pulse potentials and durations.
[1]Z. Y. Kang, M. G. He, G. X. Lu, and Y. Zhang, "A density model based on the
Modified Quasichemical Model and applied to the (LiCl plus KCl plus CsCl) liquid," Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, vol. 55, 208-218, 2016.
[2]J. S. Wilkes, "A short history of ionic liquids - from molten salts to neoteric solvents," Green Chemistry, vol. 4, 73-80, 2002.
[3]N. V. Plechkova and K. R. Seddon, "Applications of ionic liquids in the chemical industry," Chemical Society Reviews, vol. 37, 123-150, 2008.
[4]K. R. Seddon, A. Stark, and M. J. Torres, "Influence of chloride, water, and organic solvents on the physical properties of ionic liquids," Pure and Applied Chemistry, vol. 72, 2275-2287, 2000.
[5]P. Walden, Bull. Acad. Imper. Sci., 1914.
[6]E. M. Arnett and J. F. Wolf, "Solvation energies of aliphatic ammonium ions in water and fluorosulfuric acid," Journal of the American Chemical Society, vol. 97, 3262-3264, 1975.
[7]R. J. Gale, B. Gilbert, and R. A. Osteryoung, "Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures," Inorganic Chemistry, vol. 17, 2728-2729, 1978.
[8]T. M. Laher and C. L. Hussey, "Copper(I) and copper(II) chloro complexes in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid
," Inorganic Chemistry, vol. 22, 3247-3251, 1983.
[9]J. Robinson and R. A. Osteryoung, "An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride," Journal of the American Chemical Society, vol. 101, 323-327, 1979.
[10]T. B. Scheffler and C. L. Hussey, "Electrochemical study of tungsten chloro complex chemistry in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid," Inorganic Chemistry, vol. 23, 1926-1932, 1984.
[11]T. B. Scheffler, C. L. Hussey, K. R. Seddon, C. M. Kear, and P. D. Armitage, " Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: Stabilization of [MoCl6]2- and [MoCl6]3-," Inorganic Chemistry, vol. 22, 2099-2100, 1983.
[12]J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, " Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis," Inorganic Chemistry, vol. 21, 1263-1264, 1982.
[13]J. S. Wilkes and M. J. Zaworotko, "Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids," Journal of the Chemical Society-Chemical Communications, vol. 13, 965-967, 1992.
[14]S. Z. El Abedin and F. Endres, "Electrodeposition of metals and semiconductors in air- and water-stable ionic liquids," Chemphyschem, vol. 7, 58-61, 2006.
[15]J. H. Davis and K. J. Forrester, "Thiazolium-ion based organic ionic liquids (OILs). Novel OILs which promote the benzoin condensation," Tetrahedron Letters, vol. 40, 1621-1622, 1999.
[16]J. H. Davis, K. J. Forrester, and T. Merrigan, "Novel organic ionic liquids (OILs) incorporating cations derived from the antifungal drug miconazole," Tetrahedron Letters, vol. 39, 8955-8958, 1998.
[17]G. R. Feng, J. J. Peng, H. Y. Qiu, J. X. Jiang, L. Tao, and G. Q. Lai, "Synthesis of novel greener functionalized ionic liquids containing appended hydroxyl," Synthetic Communications, vol. 37, 2671-2675, 2007.
[18]A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, et al., "Task-specific ionic liquids for the extraction of metal ions from aqueous solutions," Chemical Communications, vol. 1, 135-136, 2001.
[19]M. Doyle, S. K. Choi, and G. Proulx, "High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites," Journal of the Electrochemical Society, vol. 147, 34-37, 2000.
[20]D. R. MacFarlane, J. H. Huang, and M. Forsyth, "Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries," Nature, vol. 402, 792-794, 1999.
[21]J. D. Decoppet, S. B. Khan, M. S. A. Al-Ghamdi, B. G. Alhogbi, A. M. Asiri, S. M. Zakeeruddin, et al., "Influence of Ionic Liquid Electrolytes on the Photovoltaic Performance of Dye-Sensitized Solar Cells," Energy Technology, vol. 5, 321-326, 2017.
[22]N. A. A. Latip, H. M. Ng, N. Farah, K. Ramesh, S. Ramesh, and S. Ramesh, "Novel development towards preparation of highly efficient ionic liquid based co-polymer electrolytes and its application in dye-sensitized solar cells," Organic Electronics, vol. 41, 33-41, 2017.
[23]T. J. Boyle, D. Ingersoll, M. A. Rodriguez, C. J. Tafoya, and D. H. Doughty, "An alternative lithium cathode material: Synthesis, characterization, and electrochemical analysis of Li8(Ni5Co2Mn)O16," Journal of the Electrochemical Society, vol. 146, 1683-1686, 1999.
[24]I. M. AlNashef, M. L. Leonard, M. C. Kittle, M. A. Matthews, and J. W. Weidner, "Electrochemical generation of superoxide in room-temperature ionic liquids," Electrochemical and Solid State Letters, vol. 4, D16-D18, 2001.
[25]I. M. AlNashef, M. L. Leonard, M. A. Matthews, and J. W. Weidner, "Superoxide electrochemistry in an ionic liquid," Industrial & Engineering Chemistry Research, vol. 41, 4475-4478, 2002.
[26]M. C. Buzzeo, C. Hardacre, and R. G. Compton, "Use of room temperature ionic liquids in gas sensor design," Analytical Chemistry, vol. 76, 4583-4588, 2004.
[27]M. C. Buzzeo, O. V. Klymenko, J. D. Wadhawan, C. Hardacre, K. R. Seddon, and R. G. Compton, "Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: One-electron reduction to form superoxide. Steady-state and transient behavior in the same cyclic voltammogram resulting from widely different diffusion coefficients of oxygen and superoxide," Journal of Physical Chemistry A, vol. 107, 8872-8878, 2003.
[28]D. Giovanelli, M. C. Buzzeo, N. S. Lawrence, C. Hardacre, K. R. Seddon, and R. G. Compton, "Determination of ammonia based on the electro-oxidation of hydroquinone in dimethylformamide or in the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide," Talanta, vol. 62, 904-911, 2004.
[29]T. Welton, "Room-temperature ionic liquids. Solvents for synthesis and catalysis," Chemical Reviews, vol. 99, 2071-2083, 1999.
[30]P. Wasserscheid, A. Bosmann, and C. Bolm, "Synthesis and properties of ionic liquids derived from the 'chiral pool'," Chemical Communications, vol. 3, 200-201, 2002.
[31]Y. Ishida, H. Miyauchi, and K. Saigo, "Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality," Chemical Communications, vol. 19, 2240-2241, 2002.
[32]M. Gras, N. Papaiconomou, E. Chainet, F. Tedjar, and I. Billard, "Separation of cerium(III) from lanthanum(III), neodymium(III) and praseodymium(III) by oxidation and liquid-liquid extraction using ionic liquids," Separation and Purification Technology, vol. 178, 169-177, 2017.
[33]H. Mahandra, R. Singh, and B. Gupta, "Liquid-liquid extraction studies on Zn(II) and Cd(II) using phosphonium ionic liquid (Cyphos IL 104) and recovery of zinc from zinc plating mud," Separation and Purification Technology, vol. 177, 281-292, 2017.
[34]G. T. Wei, J. C. Chen, and Z. S. Yang, "Studies on liquid/liquid extraction of copper ion with room temperature ionic liquid," Journal of the Chinese Chemical Society, vol. 50, 1123-1130, 2003.
[35]G. T. Wei, Z. S. Yang, and C. J. Chen, "Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions," Analytica Chimica Acta, vol. 488, 183-192, 2003.
[36]A. E. Visser, R. P. Swatloski, and R. D. Rogers, "pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior," Green Chemistry, vol. 2, 1-4, 2000.
[37]W. H. Lo, H. Y. Yang, and G. T. Wei, "One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids," Green Chemistry, vol. 5, 639-642, 2003.
[38]Y. Chauvin, L. Mussmann, and H. Olivier, "A novel class of versatile solvents for two-phase catalysis: Hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts," Angewandte Chemie-International Edition, vol. 34, 2698-2700, 1995.
[39]E. G. Kuntz, "Homogeneous catalysis... in water," Chemtech, vol. 17, 570-575, 1987.
[40]D. E. Kaufmann, M. Nouroozian, and H. Henze, "Molten salts as an efficient medium for palladium catalyzed C-C coupling reactions," Synlett, vol. 11, 1091-1092, 1996.
[41]J. A. Boon, J. A. Levisky, J. L. Pflug, and J. S. Wilkes, "Friedel-Crafts reactions in ambient-temperature molten salts," Journal of Organic Chemistry, vol. 51, 480-483, 1986.
[42]Y. F. Lin and I. W. Sun, "Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt," Electrochimica Acta, vol. 44, 2771-2777, 1999.
[43]A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, et al., "Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities," Journal of Physical Chemistry, vol. 88, 2614-2621, 1984.
[44]S. I. Hsiu, J. F. Huang, I. W. Sun, C. H. Yuan, and J. Shiea, "Lewis acidity dependency of the electrochemical window of zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids," Electrochimica Acta, vol. 47, 4367-4372, 2002.
[45]J. Y. Fei and G. D. Wilcox, "Electrodeposition of Zn-Co alloys with pulse containing reverse current," Electrochimica Acta, vol. 50, 2693-2698, 2005.
[46]E. Gomez, X. Alcobe, and E. Valles, "Characterisation of zinc plus cobalt alloy phases obtained by electrodeposition," Journal of Electroanalytical Chemistry, vol. 505, 54-61, 2001.
[47]M. A. PechCanul, R. Ramanauskas, and L. Maldonado, "An electrochemical investigation of passive layers formed on electrodeposited Zn and Zn-alloy coatings in alkaline solutions," Electrochimica Acta, vol. 42, 255-260, 1997.
[48]J. R. Garcia, D. C. B. do Lago, and L. F. de Senna, "Electrodeposition of Cobalt Rich Zn-Co alloy Coatings from Citrate Bath," Materials Research-Ibero-American Journal of Materials, vol. 17, 947-957, 2014.
[49]S. Lichusina, A. Sudavicius, R. Juskenas, D. Bucinskiene, and E. Juzeliunas, "Deposition of cobalt rich Zn-Co alloy coatings of high corrosion resistance," Transactions of the Institute of Metal Finishing, vol. 86, 141-147, 2008.
[50]T. Ohtsuka and A. Komori, "Study of initial layer formation of Zn-Ni alloy electrodeposition by in situ ellipsometry," Electrochimica Acta, vol. 43, 3269-3276, 1998.
[51]S. L. Diaz, O. R. Mattos, O. E. Barcia, and F. J. F. Miranda, "ZnFe anomalous electrodeposition: stationaries and local pH measurements," Electrochimica Acta, vol. 47, 4091-4100, 2002.
[52]Z. F. Lodhi, J. M. C. Mol, W. J. Hamer, H. A. Terryn, and J. H. W. De Wit, "Cathodic inhibition and anomalous electrodeposition of Zn-Co alloys," Electrochimica Acta, vol. 52, 5444-5452, 2007.
[53]P. Y. Chen and I. W. Sun, "Electrodeposition of cobalt and zinc-cobalt alloys from a lewis acidic zinc chloride-1-ethyl-3 methylimidazolium chloride molten salt," Electrochimica Acta, vol. 46, 1169-1177, 2001.
[54]M. Mouanga, L. Ricq, and P. Bercot, "Effects of thiourea and urea on zinc-cobalt electrodeposition under continuous current," Journal of Applied Electrochemistry, vol. 38, 231-238, 2008.
[55]M. S. Chandrasekar, Shanmugasigamani, and M. Pushpavanam, "Morphology and texture of pulse plated zinc-cobalt alloy," Materials Chemistry and Physics, vol. 115, 603-611, 2009.
[56]V. Thangaraj, N. Eliaz, and A. C. Hegde, "Corrosion behavior of composition modulated multilayer Zn-Co electrodeposits produced using a single-bath technique," Journal of Applied Electrochemistry, vol. 39, 339-345, 2009.
[57]L. Vlad, P. Pascariu, S. I. Tanase, D. Pinzaru, M. Dobromir, V. Nica, et al., "Magnetic properties and structure of electrodeposited Zn-Co alloys granular thin films," Physica B-Condensed Matter, vol. 406, 1481-1487, 2011.
[58]P. Pascariu, S. I. Tanase, D. Pinzaru, and V. Georgescu, "Microstructure, Magnetic and Magnetoresistance Properties of Electrodeposited [Co/Zn]50 Multilayers," Journal of Superconductivity and Novel Magnetism, vol. 24, 1917-1923, 2011.
[59]M. H. Gharahcheshmeh and M. H. Sohi, "Pulse electrodeposition of Zn-Co alloy coatings obtained from an alkaline bath," Materials Chemistry and Physics, vol. 134, 1146-1152, 2012.
[60]Q. W. Chu, W. Wang, J. Liang, J. C. Hao, and Z. S. Zhen, "Electrodeposition of high Co content nanocrystalline Zn-Co alloys from a choline chloride-based ionic liquid," Materials Chemistry and Physics, vol. 142, 539-544, 2013.
[61]Q. W. Chu, J. Liang, and J. C. Hao, "Electrodeposition of zinc-cobalt alloys from choline chloride-urea ionic liquid," Electrochimica Acta, vol. 115, 499-503, 2014.
[62]J. R. Garcia, D. C. B. do Lago, D. V. Cesar, and L. F. Senna, "Pulsed cobalt-rich Zn-Co alloy coatings produced from citrate baths," Surface & Coatings Technology, vol. 306, 462-472, 2016.
[63]L. Q. Mai, X. C. Tian, X. Xu, L. Chang, and L. Xu, "Nanowire Electrodes for Electrochemical Energy Storage Devices," Chemical Reviews, vol. 114, 11828-11862, 2014.
[64]J. Maier, "Nanoionics: ion transport and electrochemical storage in confined systems," Nature Materials, vol. 4, 805-815, 2005.
[65]X. Qin, H. C. Wang, Z. Y. Miao, J. L. Li, and Q. Chen, "A novel non-enzyme hydrogen peroxide sensor based on catalytic reduction property of silver nanowires," Talanta, vol. 139, 56-61, 2015.
[66]N. D. Cuong, D. Q. Khieu, T. T. Hoa, D. T. Quang, P. H. Viet, T. D. Lam, et al., "Facile synthesis of alpha-Fe2O3 nanoparticles for high-performance CO gas sensor," Materials Research Bulletin, vol. 68, 302-307, 2015.
[67]Y. X. Lu, S. F. Du, and R. Steinberger-Wilckens, "Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells," Applied Catalysis B-Environmental, vol. 164, 389-395, 2015.
[68]S. Y. Wang, S. P. Jiang, X. Wang, and J. Guo, "Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells," Electrochimica Acta, vol. 56, 1563-1569, 2011.
[69]F. Jamali-Sheini, R. Yousefi, D. S. Joag, and M. A. More, "Influence of chemical routes on optical and field emission properties of Au-ZnO nanowire films," Vacuum, vol. 101, 233-237, 2014.
[70]H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, vol. 268, 1466-1468, 1995.
[71]J. P. Zhang, J. E. Kielbasa, and D. L. Carroll, "Controllable fabrication of porous alumina templates for nanostructures synthesis," Materials Chemistry and Physics, vol. 122, 295-300, 2010.
[72]D. L. Wang, Y. F. Ruan, L. C. Zhang, and H. B. Yang, "Preparation by Electrodeposition and Characterization of ZnO Nanowire Arrays," Acta Physico-Chimica Sinica, vol. 26, 3369-3372, 2010.
[73]G. B. Ji, Z. H. Gong, Y. S. Liu, X. F. Chang, Y. W. Du, and M. Qamar, "Fabrication and magnetic properties of cobalt nanorod arrays containing a number of ultrafine nanowires electrodeposited within an AAO/SBA-15 template," Solid State Communications, vol. 151, 1151-1155, 2011.
[74]J. M. Yang, Y. T. Hsieh, D. X. Zhuang, and I. W. Sun, "Direct electrodeposition of FeCoZn wire arrays from a zinc chloride-based ionic liquid," Electrochemistry Communications, vol. 13, 1178-1181, 2011.
[75]J. Szymczak, S. Legeai, S. Diliberto, S. Migot, N. Stein, C. Boulanger, et al., "Template-free electrodeposition of tellurium nanostructures in a room-temperature ionic liquid," Electrochemistry Communications, vol. 24, 57-60, 2012.
[76]A. Ramazani, M. Ghaffari, M. A. Kashi, F. Kheiry, and F. Eghbal, "A new approach to fabricating magnetic multilayer nanowires by modifying the ac pulse electrodeposition in a single bath," Journal of Physics D-Applied Physics, vol. 47, 2014.
[77]H. Suh, K. H. Nam, H. Jung, C. Y. Kim, J. G. Kim, C. S. Kim, et al., "Tapered BiTe nanowires synthesis by galvanic displacement reaction of compositionally modulated NiFe nanowires," Electrochimica Acta, vol. 90, 582-588, 2013.
[78]A. S. Esmaeily, M. Venkatesan, A. S. Razavian, and J. M. D. Coey, "Diameter-modulated ferromagnetic CoFe nanowires," Journal of Applied Physics, vol. 113, 17A327, 2013.
[79]K. Pitzschel, J. Bachmann, S. Martens, J. M. Montero-Moreno, J. Kimling, G. Meier, et al., "Magnetic reversal of cylindrical nickel nanowires with modulated diameters," Journal of Applied Physics, vol. 109, 033907, 2011.
[80]S. J. Hurst, E. K. Payne, L. D. Qin, and C. A. Mirkin, "Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods," Angewandte Chemie-International Edition, vol. 45, 2672-2692, 2006.
[81]S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, et al., "Submicrometer metallic barcodes," Science, vol. 294, 137-141, 2001.
[82]I. Minguez-Bacho, S. Rodriguez-Lopez, M. Vazquez, M. Hernandez-Velez, and K. Nielsch, "Electrochemical synthesis and magnetic characterization of periodically modulated Co nanowires," Nanotechnology, vol. 25, 2014.
[83]G. D. Sulka, A. Brzozka, and L. F. Liu, "Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates," Electrochimica Acta, vol. 56, 4972-4979, 2011.