| 研究生: |
王珮馨 Wang, Pei-Hsin |
|---|---|
| 論文名稱: |
以新穎亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌處理含硝酸氮高導電度工業廢水之評估 Evaluation of Nitrite/Nitrate Dependent Anaerobic Methane Oxidation (N-DAMO) Microorganisms for nitrate removal in high conductivity industrial wastewater |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 厭氧流體化薄膜反應槽 、工業廢水 、導電度 、初始蛋白質濃度 |
| 外文關鍵詞: | AFMBR, industrial wastewater, conductivity, initial protein concentration |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌群利用甲烷作電子提供者及碳源進行脫硝。污水處理廠的厭氧處理流程產生甲烷,回收利用後可避免甲烷逸散至廠外,亦可作亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌群脫硝之碳源,是近來越多研究關於應用亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌群於污水處理廠的原因。
本研究以厭氧流體化薄膜反應槽培養亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌群,以稀釋過的工業廢水為進流,工業廢水導電度為14.5 mS/cm,含濃度90.1 mg-C/L有機碳、159.4 mg-N/L硝酸氮。反應槽進流硝酸氮濃度為45.6 mg-N/L,水力停留時間1.6天時,取汙泥進行脫硝批次實驗並以多元線性迴歸分析。硝酸氮濃度範圍介於43至63 mg-N/L,硝酸氮、有機碳、溫度和甲烷去除量對總硝酸氮去除率有正面影響,其係數分別為0.2、0.1、4.2及0.9,反之,初始蛋白質濃度對總硝酸氮去除率有負面影響,其係數為-0.5。
與不提供甲烷的組別相比,廢水中有機碳降低亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌群之活性。移除廢水中有機碳,在硝酸氮濃度45 mg-N/L、導電度5.0 mS/cm及甲烷濃度0.78 mmol/L時,其亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌群之貢獻可達82%,培養亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌群時,應納入考量。
N-DAMO microorganisms utilize methane as electron donor and carbon source for denitrification. For the reason that methane is produced during anaerobic process in wastewater treatment plant, reusing methane can simultaneously solve problem of methane emission and deficiency of carbon in wastewater for denitrification. Therefore, application of N-DAMO microorganisms in wastewater treatment process has been popular in recent years.
An industrial wastewater, with conductivity of 14.5 mS/cm, 90.1 mg-C/L of TOC, and 159.4 mg-N/L of nitrate, was used to evaluate nitrate removal by N-DAMO microorganisms in this study. With low growth rate, N-DAMO microorganisms were enriched in an AFMBR system, and diluted industrial wastewater was applied as substrate. When influent nitrate concentration applied to AFMBR system was 45.6 mg-N/L and HRT was 1.6 days, sludge was taken out from AFMBR system for denitrification batch experiments, and multiple linear regression was used to analyze. With initial nitrate concentration ranging from 43 to 63 mg-N/L, initial nitrate concentration, TOC, methane concentration and temperature had positive effect on total nitrate removal with coefficient of 0.2, 0.1, 4.2, and 0.9, while initial protein concentration adversely affected total nitrate removal with coefficient of -0.5.
TOC in industrial wastewater decreased N-DAMO microorganisms’ activity comparing with batches without purging methane. When TOC was excluded from industrial wastewater, N-DAMO contribution could achieve 82% with high nitrate of 45 mg-N/L, high conductivity of 5.0 mS/cm, and high methane concentration of 0.78 mmol/L. As a result, these factors should be considered while enriching N-DAMO microorganisms.
Ahn, Y.H., Sustainable nitrogen elimination biotechnologies: A review. Process Biochem. 41, 1709–1721, 2006.
Beal, E.J., House, C.H., Orphan, V.J., Manganese- and iron-dependent marine methane oxidation. Science,325(5937), 184–187, 2009.
Cai, C., Hu, S., Chen, X., Ni, B.J., Pu, J., Yuan, Z., Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox. Sci. Total Environ. 639, 278–285, 2018.
Chen, J., Zhou, Z.C., Gu, J.D., Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl. Microbiol. Biotechnol. 98, 5685–5696, 2014.
Chen, X., Guo, J., Shi, Y., Hu, S., Yuan, Z., Ni, B.J., Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor. Environ. Sci. Technol. 48, 9540–9547, 2014.
Chen, X., Guo, J., Xie, G.J., Liu, Y., Yuan, Z., Ni, B.J., A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility. Water Res. 85, 295–303, 2015.
Conrad, R., The global methane cycle: Recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292, 2009.
Cui, M., Ma, A., Qi, H., Zhuang, X., Zhuang, G., Anaerobic oxidation of methane: An “active” microbial process. Microbiologyopen 4, 1–11, 2015.
Dinçer, A.R., Kargi, F., Salt inhibition of nitrification and denitrification in saline wastewater. Environ. Technol. (United Kingdom) 20, 1147–1153, 1999.
Ding, Z.-W., Ding, J., Fu, L., Zhang, F., Zeng, R.J., Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Appl. Microbiol. Biotechnol. 98, 10211-10221, 2014.
Downing, L.S., Nerenberg, R., ENVIRONMENTAL BIOTECHNOLOGY Effect of bulk liquid BOD concentration on activity and microbial community structure of a nitrifying, membrane-aerated biofilm. Appl. Microbiol. Biotechnol. 81, 153–162, 2008.
Ettwig, K.F., Butler, M.K., LePaslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., DeBeer, D., Gloerich, J., Wessels, H.J.C.T., VanAlen, T., Luesken, F., Wu, M.L., Van DePas-Schoonen, K.T., Op Den Camp, H.J.M., Janssen-Megens, E.M., Francoijs, K.J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.M., Strous, M., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548, 2010.
Ettwig, K.F., Shima, S., Van DePas-Schoonen, K.T., Kahnt, J., Medema, M.H., Op Den Camp, H.J.M., Jetten, M.S.M., Strous, M., Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ. Microbiol. 10, 3164–3173, 2008.
Ettwig, K.F., VanAlen, T., Van DePas-Schoonen, K.T., Jetten, M.S.M., Strous, M., Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl. Environ. Microbiol. 75, 3656–3662, 2009.
Fu, L., Ding, Z.-W., Ding, J., Zhang, F., Zeng, R.J., The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes. Appl. Microbiol. Biotechnol. 99, 7925-7936, 2015.
Glass, C., Silverstein, J., Denitrification of high-nitrate, high-salinity wastewater. Water Res. 33, 223–229, 1999.
Hakemian, A.S., Rosenzweig, A.C., The Biochemistry of Methane Oxidation 2007.
Hanson, R.S., Hanson, T.E., Methanotrophic bacteria. Microbiol. Rev. 60, 439–471, 1996.
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570, 2013.
He, Z., Cai, C., Geng, S., Lou, L., Xu, X., Zheng, P., Hu, B., Mdodeling a nitrite-dependent anaerobic methane oxidation process: Parameters identification and model evaluation. Bioresour. Technol. 147, 315–320, 2013.
He, Z., Geng, S., Shen, L., Lou, L., Zheng, P., Xu, X., Hu, B., The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Res. 68, 554–562, 2015.
Hoehler, T.M., Alperin, M.J., Albert, D.B., Martens, C.S., Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortium. Global Biogeochem. Cycles 8, 451–463, 1994.
Hoover, S.R., Jasewicz, L., Pepinsky, J.B., Porges, N., Assimilation of Dairy Wastes by Activated Sludge, Source: Sewage and Industrial Wastes 1951.
Hu, B., He, Z., Geng, S., Cai, C., Lou, L., Zheng, P., Xu, X., Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: Impact of reactor configuration. Appl. Microbiol. Biotechnol. 98, 7983–7991, 2014.
Hu, B.L., Shen, L.D., Lian, X., Zhu, Q., Liu, S., Huang, Q., He, Z.F., Geng, S., Cheng, D.Q., Lou, L.P., Xu, X.Y., Zheng, P., He, Y.F., Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc. Natl. Acad. Sci. U. S. A. 111, 4495–4500, 2014.
Hu, S., Zeng, R.J., Burow, L.C., Lant, P., Keller, J., Yuan, Z., Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ. Microbiol. Rep. 1, 377–384, 2009.
Hu, S., Zeng, R.J., Keller, J., Lant, P.A., Yuan, Z., Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environ. Microbiol. Rep. 3, 315–319, 2011.
Islas-Lima, S., Thalasso, F., Gómez-Hernandez, J., Evidence of anoxic methane oxidation coupled to denitrification. Water Res. 2004.
Kampman, C., Hendrickx, T.L.G., Luesken, F.A., vanAlen, T.A., Op den Camp, H.J.M., Jetten, M.S.M., Zeeman, G., Buisman, C.J.N., Temmink, H., Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment. J. Hazard. Mater. 227–228, 164–171, 2012.
Knittel, K., Boetius, A., Das bernstein-führende Tertiär zwischen Leipzig und Bitterfeld, Mauritiana (Altenburg) 2006.
Krüger, M., Meyerdierks, A., Glöckner, F.O., Amann, R., Widdel, F., Kube, M., Reinhardt, R., Kahnt, J., Böcher, R., Thauer, R.K., Shima, S., A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426, 878–881, 2003.
Kuenen, J.G., Anammox bacteria: From discovery to application. Nat. Rev. Microbiol. 6, 320–326, 2008.
Lefebvre, O., Moletta, R., Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006.
Luesken, F.A., Sánchez, J., vanAlen, T.A., Sanabria, J., Op denCamp, H.J.M., Jetten, M.S.M., Kartal, B., Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Appl. Environ. Microbiol. 77, 6802–6807, 2011.
Matějů, V., Čižinská, S., Krejčí, J., Janoch, T., Biological water denitrification-A review. Enzyme Microb. Technol. 14, 170–183, 1992.
Nauhaus, K., Boetius, A., Krüger, M., Widdel, F., In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4, 296–305, 2002.
Nauhaus, K., Treude, T., Boetius, A., Krüger, M., Environmental regulation of the anaerobic oxidation of methane: A comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7, 98–106, 2005.
Raghoebarsing, A.A., Pol, A., Van DePas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Sinninghe Damsté, J.S., Op Den Camp, H.J.M., Jetten, M.S.M., Strous, M., A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921, 2006.
Rasigraf, O., Kool, D.M., Jetten, M.S.M., Sinninghe Damsté, J.S., Ettwig, K.F., Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera.” Appl. Environ. Microbiol. 80, 2451–2460, 2014.
Reeburgh, W.S., Methane consumption in Cariaco Trench waters and sediments. Earth Planet. Sci. Lett. 28, 337–344, 1976.
Shen, L. dong, Hu, B. lan, Liu, S., Chai, X. ping, He, Z. fei, Ren, H. xing, Liu, Y., Geng, S., Wang, W., Tang, J. liang, Wang, Y. ming, Lou, L. ping, Xu, X. yang, Zheng, P., Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments. Appl. Microbiol. Biotechnol. 100, 7171–7180, 2016.
Shi, Y., Hu, S., Lou, J., Lu, P., Keller, J., Yuan, Z., Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ. Sci. Technol. 47, 11577–11583, 2013.
Strous, M., Heijnen, J.J., Kuenen, J.G., Jetten, M.S.M., The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596, 1998.
Sun, S.P., Nàcher, C.P.I., Merkey, B., Zhou, Q., Xia, S.Q., Yang, D.H., Sun, J.H., Smets, B.F., Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review. Environ. Eng. Sci. 27, 111–126, 2010.
Syron, E., Casey, E., Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements. Environ. Sci. Technol. 2008.
Wang, D., Wang, Y., Liu, Y., Ngo, H.H., Lian, Y., Zhao, J., Chen, F., Yang, Q., Zeng, G., Li, X., Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresour. Technol. 234, 456–465, 2017.
Wiesenburg, D.A., Guinasso, N.L., Equilibrium Solubilites of Methane, Carbon Monoxide, and Hydrogen in Water and Sea Water. J. Chem. Eng. Data 24, 356–360, 1979.
Winkler, M.K.H., Ettwig, K.F., Vannecke, T.P.W., Stultiens, K., Bogdan, A., Kartal, B., Volcke, E.I.P., Modelling simultaneous anaerobic methane and ammonium removal in a granular sludge reactor. Water Res. 73, 323–331, 2015.
Wu, M.L., DeVries, S., VanAlen, T.A., Butler, M.K., Op Den Camp, H.J.M., Keltjens, J.T., Jetten, M.S.M., Strous, M., Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph “candidatus methylomirabilis oxyfera.” Microbiology 157, 890–898, 2011a.
Wu, M.L., Ettwig, K.F., Jetten, M.S.M., Strous, M., Keltjens, J.T., VanNiftrik, L., A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus “Methylomirabilis oxyfera,” in: Biochemical Society Transactions. pp. 243–248, 2011b.
Yamamoto, S., Alcauskas, J.B., Crozier, T.E., Solubility of Methane in Distilled Water and Seawater. J. Chem. Eng. Data 21, 78–80, 1976.
陳瑩禎,利用亞硝酸鹽/硝酸鹽型厭氧甲烷氧化菌進行脫硝除氮之研究,國立成功大學環境工程學系碩士論文,2018年