簡易檢索 / 詳目顯示

研究生: 羅翊萍
Luo, Yi-Ping
論文名稱: 動樑式加熱爐之燃料配比及熱效率分析
Fuel Feed Distribution Ratio and Furnace Efficiency Analysis for a Walking-Beam Type Reheating Furnace
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 燃燒紊流加熱爐燃料
外文關鍵詞: Numerical, Turbulent reaction flow, Fuel flow rate, Reheating furnace
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鋼廠中,鋼胚需經過一連串的生產製程,鋼胚在進入下游的熱軋延製程前,鋼胚需要再加熱到達塑性變形之溫度,此階段的加熱爐為本文要探討的主題,為使後續之熱軋延製程順利進行,關鍵技術之一為加熱爐之溫控技術。本文以兩個主題進行探討(1)在相同燃料質量流率下,改變加熱爐各區段之燃料比例,對鋼胚均溫性之影響(2)已知鋼胚升溫曲線的情況下,利用數值方法來反求加熱爐各區的燃料質量流率。
    本研究建立三維鋼胚加熱爐(reheating furnace)模型,透過數值模擬分析加熱爐内之流場與溫度場,並將模擬值與實測值進行比對,結果顯示爐溫平均誤差為11%,鋼胚平均誤差為6.5%。並以六種操作條件,研究在相同燃料質量流率下,改變加熱爐各區段之燃料比例,對鋼胚均溫性之影響,結果指出燃料比例的多寡會直接影響到各區鋼胚之溫度,然而,在均溫區增加燃料比例,會導致鋼胚出口處的溫度不均勻,使冷痕效應(Skid mark severity)更加嚴重。
    此外,探討在已知鋼胚升溫曲線的情況下,利用數值方法來反求加熱爐各區的燃料流率,在此部份發展二維模型來反求燃料流率,在已知實際三維升溫曲線之情況下,能快速反求各區之燃料質量流率,較三維模型可減少99%之計算時間,並使用兩組升溫曲線進行反求燃料之數值運算,結果顯示反求的數值解與實際之升溫曲線誤差為5.2%。

    Three-dimensional numerical simulation is performed to predict the heat transfer performance in a walking-beam type reheating furnace. The furnace uses a mixture of COG (coke oven gas) as a heat source to reheat the slabs. The fuel is injected into the furnace at four zones: preheating zone, first heating zone, second heating zone, and soaking zone. This numerical model considers turbulent reactive flow coupled with radiative heat transfer in the furnace; meanwhile, the conjugated conduction, convection, radiation heat transfers in the slabs. This study contains two topics(1) Examining six cases of different fuel feed ratio at the four zones under constant total fuel feed condition. (2) Estimating the fuel mass flow rate at each zone of the reheating furnace when the slab heating curve is given. The numerical predictions of the slab temperature and furnace gas deviations with the in-situ data are about 6.5% and 11%, respectively. In addition, this study examines six cases of different fuel feed ratio at the four heating zones under constant total fuel feed condition. It is found that decrease fuel mass flow rate in the preheating zonee can enhance heat efficiency, while increasing the fuel mass flow rate in the soaking zone can lead the slab temperature non-uniformity. When the slab heating curve is given, an initial iterative method is proposed to estimate the fuel flow rate at each zone of the reheating furnace in 2-D model. The maximum errors for the temperature of slabs between the 2-D and 3-D numerical are 6.0% and 6.9% for case1 and case2, respectively. The maximum temperature relative error of the slab between 3-D numerical simulation and the exact 3-D solution is 5.2%.

    目錄 摘要..........I Abstract .... II 誌謝...........XVII 目錄...........XVIII 表目錄.........XX 圖目錄.........XXI 符號說明.......XXIV 第一章 緒論..............1 1.1研究緣起 .......1 1.2文獻回顧........2 1.3研究目的........5 第二章 理論分析...........9 2.1物理模型........9 2.1.1改變各區燃料比例對鋼胚冷痕之效應(三維)...9 2.1.2已知鋼胚升溫曲線反求燃料質量流率(二維)...10 2.2統御方程式......10 2.3邊界條件........17 2.3.1改變各區燃料比例對鋼胚冷痕之效應(三維) ...17 2.3.2已知鋼胚升溫曲線反求燃料質量流率(二維) ...19 2.4鋼胚熱物理性質....20 第三章 數值分析..................35 3.1數值方法...............35 3.1.1通用守恆方程式.....36 3.1.2有限容積法.........36 3.1.3 SIMPLEC演算法.....39 3.1.4邊界條件之離散......42 3.2解題流程及格點建立.......43 3.3收斂條件................44 第四章 結果與討論.................53 4.1改變各區燃料比例對鋼胚冷痕之效應...53 4.2已知鋼胚升溫曲線反求燃料質量流率...61 第五章 結論......92 參考文獻.........94 附錄A 熱物理性質..98

    [1] Marino, P., Pignotti, A. and Solis, D., “Control of pusher furnaces for steel slab reheating using a numerical model,” Latin American Applied Research, Volume 34, pp. 249-255, 2004.
    [2] Zhang, C., Ishii, T., and Sugiyama, S., “Numerical modeling of the thermal performance of regenerative slab reheat furnaces,” Numerical Heat Transfer 32,pp. 613-631, 1997.
    [3] Lindholm, D. and Leden, B., “A finite element method for solution of the three-dimensional time-dependent heat-conduction equation with application for heating of steels in reheating furnaces,” Numerical Heat Transfer A35,pp. 155-172, 1999.
    [4] Kim, J. G. and Huh, K. Y., “Three-dimensional analysis of the walking-beam-type slab reheating furnace in hot strip mills,” Numerical Heat Transfer A38, pp. 589-609, 2000.
    [5] Chen, W. H., Chung, Y. C. and Liu, J. L., “Analysis on energy consumption and performance of reheating furnaces in a hot strip mill ,”International communications in heat and mass transfer32,695-706, 2005.
    [6] Kim, M. Y., “A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace,” International Journal of Heat and Mass Transfer, Volume 50, pp. 3740-3748, 2007.
    [7] Hsieh, C. T., Huang, M. J., Lee, S. T. and Wang, C. H., “Numerical Modeling of a Walking-Beam-Type Slab Reheating Furnace,” Numerical Heat Transfer Part A: Application, Volume 53, Issue 9 , pp. 966-981 , 2008.
    [8] Huang, M. J., Hsieh, C. T., Lee, S. T. and Wang, C. H., “A Couple Numerical Study of Slab Temperature and Gas Temperature in the Walking-Beam Type Slab Reheating Furnace” Numerical Heat Transfer Part A: Application, Volume 54, Issue 6, pp. 626 – 646 , 2008.
    [9] Han, S. H., Baek, S. W., and Kim, M. Y., “Transient radiative heating characteristics of slabs in walking beam type reheating furnace,” International Journal of Heat and Mass Transfer, Volume 52, pp.1005-1011, 2008
    [10] Han, S. H., Chang, D. and Kim, C. Y.,“A numerical analysis of slab heating characteristics in a walking beam type reheating furnace,” International Journal of Heat and Mass Transfer, Volume 53, Issue19-20, pp. 3855–3861, 2010.
    [11] Steinboeck, A., Wild, D., Kiefer, T., and Kugi, A., “A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media,” International Journal of Heat and Mass Transfer, Volume 53, Issue 25-26, pp.5933-5946, 2010.
    [12] Singh, V. K. and Talukdar, P., “Comparisons of different heat transfer models of a walking beam type reheat furnace,” International Journal of Heat and Mass Transfer, Volume 547, pp. 20–26, 2013.
    [13] 李承遠,“動樑式加熱爐內鋼胚之三維熱傳分析,”機械工程研究所,國立成功大學, 2014
    [14] Kim, J. G. and Huh, K. Y., “Prediction of transient slab temperature distribution in the re-heating furnace of a walking-beam type for rolling of steel slabs,” ISIJ Inter. 40, pp. 1115-1123, 2000.
    [15] Hsieh, C. T., Huang, M. J., Lee, S. T. and Wang, C. H., “A Numerical Study of Skid Marks on the Slabs in a Walking-Beam Type Slab Reheating Furnace,” Numerical Heat Transfer Part A: Application, Volume 57, Issue 6, pp. 1 – 17, 2010.
    [16] Han, S. H. and Chang, D., “ Optimum residence time analysis for a walking beam type reheating furnace ,” International Journal Heat and Mass Transfer., Volume 55, pp. 4079-4087, 2012
    [17] Yang, Y. Y. and Lu, Y. Z., “Development of a computer control model for slab reheating furnaces, ”North-Holland Computers in industry7,145-154, 1986
    [18] Han, S. H., Chang, D., and Huh, C., “Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace,” Energy, Volume 36, Issue 2, pp. 1265–1272, 2010.
    [19] Han, S. H. and Chang, D., “Radiative slab heating analysis for various fuel gas compositions in an axial-fired reheating furnace,” International Journal of Heat and Mass Transfer, Volume 55, Issue15-16, pp. 4029– 4036, 2012.
    [20] Delabroy, O., Le Gouefflec, G., Lebrun, C., Barbotin, A., and Cervi, R.,“Performances Enhancement of reheating furnace using oxycombustion, Presented at the 2000 AISE Annual Convention.
    [21] Jaklic, A., Kolenko, T., and Zupancic, B., “The influence of the space between the billets on the productivity of a continuous walking-beam furnace,” Applied thermal engineering, Volume 25, pp.783-795, 2004.
    [22] Ou, J. P., Ma, A. C., Zhan, S. H., Zhou, J. M., and Xiao, Z. Q., “Dynamic simulation on effect of flame arrangement on thermal process of regenerative reheating furnace ,”J. Cent. South Univ. Technol., 2007.
    [23] Tang, Y., Laine, J., Fabritius, T., and Harkki, J., “The modeling of the gas flow and its influence on the scale accumulation in the steel slab pusher-type reheating furnace,” ISIJ Int. 43, pp.1333-1341, 2003.
    [24] Jang, J. H., Lee, D. E., Kim, M. Y., Kim, H. G., “Investigation of the slab heating characteristics in reheating furnace with the formation and growth of scale on the slab surface ,” International Journal of Heat and Mass Transfer, Volume 53, pp. 4326– 4332, 2010.
    [25] Launder, B. E., and Spalding, D. B., “Mathematical Models of Turbulence ,”ed. London: Academic Press, pp. 99-100, 1972
    [26] Modest, M. F., “Radiative heat transfer,”2nd ed., McGraw-Hill, New York, USA, 2003
    [27] Carlson, B. G. and Lathrop, K. D., “Transport Theory-The Method of Discrete Ordinates”, in Greenspan, H. ,Kelber, C. N., and Okrent, D.(eds.), Computing Methods in Reactor Physics, chap.3, pp.165-266, Gordon and Breach, New York, 1986.
    [28] Modest, M. F., “The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer,” J. Heat Transfer 113, pp. 650-656, 1991.
    [29] Coppalle, A. and Vervisch, P., “The Total Emissivities of High-Temperature Flames,” Combustion and Flame 49, pp. 101-108, 1983.
    [30] Smith, T. F. , Shen, Z. F., and Friedman, J. N., Evaluation of coefficients for the weighted sum of gray gases model,” J. Heat Transfer ,vol.104, pp. 602-608, 1982.
    [31] Incoropera, F. P., DeWitt, D. P., BergMan, T. L., Lavine, A. S., “ Fundamentals of Heat and Mass Transfer,” 6th ed., John&Sons, Hoboken, USA, 2007
    [32] ANSYS Fluent, A Release 15.0 documentation , ANSYS, Inc.2013.
    [33] STAR-CD, Methodology,Version3.15, Japan, 2001
    [34] CFD-ACE(U), CFD Research Corporation,Albama, USA, 2004
    [35] Van Doormaal, J. P. and Raithby, F. D., “Enhancements of the SIMPLE Method Predicting Incompressible Fluid Flows”, Numerical heat Transfer Vol.7, pp.147-163, 1984.
    [36] Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corporation, 1984.
    [37] Hinze, J. O., Turbulence, McGraw-Hill, New York, USA, 1975
    [38] Siegel, R. and Howell, J., Thermal Radiation Heat Transfer, 4th ed., Taylor & Francis, New York, 2002.

    下載圖示 校內:2020-06-22公開
    校外:2020-06-22公開
    QR CODE