簡易檢索 / 詳目顯示

研究生: 李穆恩
Sadeli, Efrat
論文名稱: 整合共用設備組態之多時期熱交換器網路設計
Incorporation of equipment-sharing schemes in multi-period HEN designs
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 94
中文關鍵詞: 熱交換網路多期程序設備共用
外文關鍵詞: Heat exchanger network, Multi-period process, Equipment sharing
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱交換網路的設計早已經被視為一種減少化工程序公用流體使用量的有效方法。傳統上,我們的設計目標為最小單一操作條件下的總年成本(TAC)。但在多時期操作化工程序中,我們還需額外的研究議題。實體而言,雖然熱交換網路中含有相同匹配的數目但在不同時期所需要的熱交換面積是不同的。過去,沒有任何研究針對此一問題提出解決方案。所以在這篇論文中,我們提出一個改良的數學模式並配合經驗法則來產生考慮設備共用的多時間熱交換網路工程設計。最後也用幾個案例來說明上述建議的可行性與效益。

    Heat exchange network (HEN) design has been considered as an effective approach to reduce the utility consumption rates in industrial processes. Yee and Grossmann, (1990) and Yee et al., (1990) stated that traditionally, the design objective is to minimize the total annual cost. However, it is often necessary to consider additional implementation issues in multi-period chemical processes as reported by Tantimuratha et al., (2001); and Aaltola, (2002). Specifically, Chen et al.,(2005); Ma et al., (2008); and Fraser et al., (2010) reported that the same match in a HEN may require different heat-transfer areas in different periods. None of the reported studies provided any guideline to produce proper exchanger designs that can handle the heat duties in all periods. In this thesis, a modified mathematical model and equipment sharing heuristics have been developed to generate suitable simple engineering designs for the heat exchangers in a multi-period HEN. Several case studies are presented in this thesis to demonstrate the feasibility and benefits of the proposed procedure.

    Abstract i 摘要 ii Acknowledgement iii Contents iv List of Tables vi List of Figures ix Nomenclature xi 1 Introduction 1 2 Conventional Design Procedures for Multi-Period Heat Exchanger Networks 4 2.1 Superstructure 5 2.2 Model formulation 6 2.3 Example 9 3 Optimal Engineering Designs for Multi-Period Heat Exchanger Networks 13 3.1 FT correction factor for a shell-and-tube heat exchanger with N-2N configuration 16 3.2 Optimal engineering designs for heat exchanger networks 19 3.3 Automatic generation of optimal engineering designs 22 3.4 Example 24 4 Heuristic Rules for Synthesizing Equipment Sharing Schemes 28 4.1 Heuristic rules 30 4.2 Motivation Example 1 33 4.3 Motivation Example 2 42 4.4 Screening Indicators 44 5 Case Studies 49 5.1 Case 1 49 5.2 Case 2 51 5.3 Case 3 52 6 Conclusions and Future Works 65 6.1 Conclusions 65 6.2 Future Works 65 Reference 66 Appendix A: GAMS Code for Example Case in Chapter 3 68 Appendix B: GAMS Code for Example Case in Chapter 3 93 About author 94

    Aaltola, J. Simultaneous synthesis of flexible heat exchanger network. Appl Thermal Eng, 22, 907 – 918, 2002.
    Bennett, C.A., Kistler, R.S., Lestina, T.G., King, D.C., Improving Heat Exchanger Designs.Chem Eng Prog, April 2007, 40-45. 2007
    Biegler, L.T., Westerberg, A.L. and Grossmann, I.E. Systematic Methods of Chemical Process Design. Prentice Hall. 1997.
    Bowman, R.A, Mueller, A.C. and Nagle, W.M. Mean Temperature Differences in Design, Trans ASME, 62, 283. 1940
    Chen, C.L. and Hung, P.S. A Novel Strategy for Synthesis of Flexible Heat-Exchange Networks. J. Chin. Inst. Chem. Engrs, 36(5), 421– 432, 2005
    Ciric, A.R., and Floudas, C.A. Heat exchanger network synthesis without decomposition. Comput Chem Eng, 15, 385, 1991.
    Edwards, J.E. Design and rating shell and tube heat exchangers. P&ID Design Ltd, Teesside, UK, 2008.
    Floudas, C.A., Ciric, A.R., and Grossmann, I.E. Automatic synthesis of optimum heat exchanger network synthesis. AIChEJ, 32, 276, 1986.
    Fraser, D.M., and Isafiade, A.J. Interval based MINLP superstructure synthesis of heat exchanger networks for multi-period operations. Chem Eng Res Des, 88, 1329 – 1341, 2010.
    Galli, M.R. and Cerda, J. Synthesis of heat exchanger networks featuring a minimum number of constrained-size shells of 1-2 type. Appl Thermal Eng, 20, 1443 – 1467, 2000.
    Hewitt, G.F. Handbook of Heat Exchangers Design, Begell House Inc. 1992.
    Kern, D.Q. Process Heat Transfer, McGraw-Hill. 1950.
    Kravanja, Z. and Sorsak, A. Simultaneous MINLP synthesis of heat exchanger networks comprising different exchanger types. Comput Chem Eng, 26, 599 – 615, 2002.
    Kravanja, Z. and Sorsak, MINLP retrofit of heat exchanger networks comprising different exchanger types. Comput Chem Eng, 28, 235 – 251, 2004.
    Linnhoff, B., Ahmad. S., and Smith. R., Design of Multi-pass Heat Exchangers: an Alternative Approach, Trans ASME J Heat Transfer, 110, 304. 1988
    Ma, X., Yao, P.J., Luo, X. and Roetzel, W. Synthesis of multi-stream heat exchanger network for multi-period operation with genetic/simulated annealing algorithms. Appl Thermal Eng, 28, 809 – 823, 2008.
    Papoulias, S.A., & Grossmann, I.E. A structural optimization approach process synthesis-II. Heat recovery networks. Comput Chem Eng, 7, 707, 1983.
    Perry, R.H., and Green, D.W, Perry’s Chemical Engineers’ Handbook.7th –ed. McGraw-Hill. 1999.
    Smith, R. Chemical Process: Design and Integration, John Wiley & Sons, Ltd. 2005.
    Tantimuratha, L., Asteris, G., Antonopoulos, D.K. and Kokossis, A.C. A conceptual programming approach for the design of flexible heat exchanger networks. Comput Chem Eng, 25(4-6), 887 – 892, 2001.
    Verheyen, W. and Zhang, N. Design of flexible heat exchanger network for multi-period operation. Chem Eng Sci, 61, 7730 – 7753, 2006.
    Yee, T.F. and Grossmann, I.E. Simultaneous optimisation models for heat integration – II. Heat exchanger network synthesis. Comput Chem Eng, 14(10), 1165, 1990.
    Yee, T.F., Grossmann, I.E. and Kravanja, Z. Simultaneous optimisation models for heat integration - I. Area and energy targeting and modeling of multi-stream exchangers. Comput Chem Eng, 14(10), 1165, 1990.

    下載圖示 校內:2012-08-12公開
    校外:2012-08-12公開
    QR CODE