簡易檢索 / 詳目顯示

研究生: 簡子欽
Chien, Tzu-Chin
論文名稱: 鎢酸鹽類螢光粉體之合成及其發光特性之研究
Synthesis and luminescent properties of yttrium-tungsten oxide phosphors
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 140
中文關鍵詞: 釔鎢氧化物多重配位數熱穩定性量子效率鎢酸鹽類助熔劑光致發光
外文關鍵詞: Yttrium-tungsten oxide, Multi-coordinate sites, Thermal quenching, Quantum efficiency, tunstate flux
相關次數: 點閱:149下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以固相反應法製備Y10W2O21: Eu3+螢光粉,探討不同陽離子(La3+, Lu3+, Sc3+) 的摻雜或M2WO4 (M = Li, Na, K)助熔劑的添加對Y10W2O21: Eu3+螢光粉結構與發光性質之影響。實驗結果是以熱重/熱差分析儀、粉末X光繞射儀、場發射電子顯微鏡、吸收光譜及螢光光譜儀等分析之,其中螢光光譜包括激發及放射光譜、衰退時間、熱穩定性與量子效率量測。
    研究結果顯示,(Y1-xEux)10W2O21 (x = 0.01-0.3)螢光粉可於空氣中1400 °C並持溫6小時煆燒而得,其結晶性佳,晶粒大小200-500 nm;激發光譜顯示此螢光粉可以近紫外光 (392 nm) 或藍光 (465 nm) 激發;而產生的兩個主要放射峰,位於612 nm與627 nm之5D0-7F2躍遷,此結果是因Eu3+離子取代擁有兩個配位數的Y3+離子,而造成不同能階分裂的躍遷所致。其放射強度與量子效率隨Eu3+摻雜量之增加而增強,直到Eu3+摻雜量達22.5 mol% 後才產生濃度淬滅。
    (Y0.99-xMxEu0.01)10W2O21摻雜不同陽離子 (M = La3+, Lu3+, Sc3+) 的研究結果顯示,摻雜量x = 0.01-0.25時,均為單一Y10W2O21斜方晶之繞射峰;而La3+與Lu3+之摻雜量為x = 0.5-0.99時,其相分別轉變成La6WO12立方晶與Lu6WO12菱方晶結構。高摻雜量 (x = 0.5-0.99) 的粉末,因晶體結構的轉變,使得其激發光譜圖之CTB隨陽離子之離子半徑的增加 (如La3+) 而red shift,其放射光強度因而減弱;反之,隨陽離子之離子半徑的減少 (如Lu3+) 而blue shift,使得其放射光強度因而增強。
    添加M2WO4 (M = Li, Na, K) 助熔劑的研究結果顯示,在相同的煆燒條件下,Li2WO4助熔劑會造成Y30W8O69二次相的生成;而添加30 wt% Na2WO4與K2WO4助熔劑皆可生成單一之Y10W2O21斜方晶相,且可避免顆粒之團聚。Na2WO4與K2WO4助熔劑可降低起始原料開始反應的溫度,並於煆燒階段幫助Y10W2O21: Eu3+螢光粉的溶解-再結晶過程,使顆粒大小分別成長到9 μm與1 μm。粉末XRD之半高寬因助熔劑添加量的增加而降低,表示其結晶性因而變佳。添加Na2WO4與K2WO4助熔劑之Y10W2O21: Eu3+螢光粉其放射光強度與未添加者相比分別增加190% 與150%。

    Eu3+-doped fluorite-related yttrium-tungsten oxide Y10W2O21 (5Y2O3·2WO3) was prepared using vibrating-mill-mixed powder and solid-state reactions. The synthesis temperature was investigated by thermogravimetric/differential thermal analysis and X-ray diffraction. The morphology of the phosphor was confirmed by scanning electron microscope (SEM) measurement. The photoluminescence (PL) properties, including the excitation and emission spectra, decay curves (lifetime), thermal stability and quantum efficiency were investigated.The PL emission intensity was increased with Eu3+ content up to about 22.5 mol% and then decreased due to the concentration quenching effect. The major intensity emission wavelengths, located at 612 nm and 627 nm for excitation at 392 nm, were attributed to replacement of the Eu3+ ions with 7 or 8 coordination sites of Y3+ ions.
    In order to enhance the luminescence properties of Y10W2O21: Eu3+ phosphors, the effect of codoping cation (La3+, Lu3+, Sc3+) or fluxes on the structure and photoluminescence properties of Y10W2O21: Eu3+ phosphors were also investigated. The results of codoping cation showed that the orthorhombic structure of Y10W2O21 changed to cubic La6WO12 and rhombohedral La6WO12 when the high codoping ratio. The CTBs of the excitation spectrum would shift as the structure change due to the difference of the cation radius. In the study of tungstate fluxes, the samples with Na2WO4 and K2WO4 fluxes were in agreement with those of the Y10W2O21 phase In addition, the experimental results indicate that the particle size and morphology of the Eu0.5Y9.5W2O21 phosphors depend on the type and content of tungstate flux. The luminescence intensities of the phosphors were effectively enhanced by the tungstate flux.

    摘要 I Extended Abstract III 致謝 XII 總目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論基礎與文獻回顧 8 2-1 發光機制簡介 8 2-1-1 發光定義 8 2-1-2 螢光體發光原理 10 2-1-3 電子-聲子之交互作用 (electron-phonon interaction) 11 2-1-4 組態座標圖 (configuration coordination diagrams) 13 2-1-5 史托克位移 (Stokes shift) 14 2-1-6 非輻射躍遷 (non-radiative transition) 15 2-1-7 能量轉移 (energy transfer) 15 2-1-7-1 能量遷徙 (energy migration) 16 2-1-7-2 交叉緩解 (cross-relaxation) 16 2-1-7-3 激發態吸收 (excitation state absorption) 16 2-1-7-4 補償效應 (Offset effect) 17 2-2 螢光材料簡介 17 2-3 螢光材料的組成與選擇 21 2-4 影響發光效率之因素 22 2-4-1 主體晶格 (Host) 22 2-4-2 濃度淬滅 (concentration quenching) 23 2-4-3 熱淬滅 (thermal quenching) 23 2-4-4 毒劑現象 (poisoning) 24 2-5 固態材料中的光致發光 24 2-5-1 本質型發光 (intrinsic luminescence) 25 2-5-2 外質型發光 (extrinsic luminescence) 25 2-5-2-1 非侷限型 (unlocalized type) 發光材料 26 2-5-2-2 侷限型 (localized type) 發光材料 26 2-6 鑭系元素之性質 28 2-6-1 稀土離子之價數 28 2-6-2 稀土離子之f-f電子躍遷 29 2-6-3 稀土離子之f-d電子躍遷 29 2-7 色彩簡介 30 2-7-1 色溫 (color temperature) 30 2-7-2 演色性指標 (color rendering index, CRI) 31 2-7-3 色度座標圖 (CIE chromaticity diagram) 31 2-8 光致發光衰減現象 33 2-9 高能震盪球磨法 (high energy vibrationg milling method) 34 2-10 量子效率 (quantum efficiency) 34 2-11 助熔劑 (flux) 35 2-12 Y10W2O21結構介紹 37 第三章 實驗方法與步驟 53 3-1 實驗藥品 53 3-2 實驗流程 54 3-3 量測與分析方法 55 3-3-1 粉末X光繞射分析 55 3-3-2 熱重/熱差 (DTA/TG) 分析 55 3-3-3 掃描式電子顯微鏡 (SEM) 分析 55 3-3-4 光致發光光譜分析 55 3-3-5 衰減時間 (Decay time) 與衰減曲線 (Decay curve) 分析 56 3-3-6 吸收光譜分析 56 3-3-7 熱穩定性分析 56 3-3-8 量子效率分析 57 3-3-9 色度座標分析 57 第四章 結果與討論 60 4-1 主體晶格Y10W2O21 60 4-1-1 熱重熱差(TG/DTA)分析 60 4-1-2 結晶相分析 60 4-1-3 結論 61 4-2 (Y1-xEux)10W2O21 螢光粉 63 4-2-1 結晶相分析 63 4-2-2 表面型態分析 63 4-2-3 激發、光致發光與吸收光譜分析 64 4-2-4 光致發光的衰減現象 66 4-2-5 臨界能量轉移距離 (Critical energy transfer distance, RC) 67 4-2-6 非對稱指數 (5D0-7F2/ 5D0-7F1 PL強度比值) 68 4-2-7 5D0-7F2躍遷的衰減曲線 68 4-2-8 溫度與發光性質之分析 69 4-2-9 量子效率 70 4-2-10 色度座標圖 71 4-2-11 結論 71 4-3 (Y1-x-yMxEuy)10W2O21 (M = La3+, Lu3+, Sc3+, x = 0-0.99) 螢光粉 87 4-3-1 結晶相分析 87 4-3-2 激發、光致發光分析 88 4-3-3 光致發光的衰減現象 90 4-3-4 色度座標圖 91 4-3-5 結論 91 4-4 鎢酸鹽類(M2WO4,M=Li, Na, K)助熔劑對合成(Y1-xEux)10W2O21 螢光粉之影響 106 4-4-1 結晶相分析 106 4-4-2 表面型態分析 107 4-4-3 熱重熱差(TG/DTA)分析 108 4-4-4 激發、光致發光光譜分析 109 4-4-5 光致發光的衰減現象 110 4-4-6 溫度與發光性質之分析 112 4-4-7 量子效率 112 4-4-8 結論 112 第五章 總結論 125 參考文獻 127 作者自述 137

    [1] Z. Xu, N.M. Kalita, M. Franchetti, A. Kumar, A facility lighting comparison based on energy savings and efficiency, pollution prevention and life cycle assessment, Environmental Management and Sustainable Development, 5, 229-243 (2016).
    [2] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties, Materials Science and Engineering: R: Reports, 71, 1-34 (2010).
    [3] T. Taguchi, Present status of white LED lighting technologies in Japan, Journal of Light & Visual Environment, 27, 131-139 (2003).
    [4] 王書任,林仁鈞,讓 LED 發光的功臣-螢光粉,中國製釉股份有限公司,(2009)。
    [5] L. Carlos, V. de Zea Bermudez, R.S. Ferreira, Multi-wavelength europium-based hybrid phosphors, Journal of Non-Crystalline Solids, 247, 203-208 (1999).
    [6] H. Yamamoto, M. Mikami, Y. Shimomura, Y. Oguri, Host to activator energy transfer in a new blue-emitting phosphor SrHfO3: Tm3+, Journal of Luminescence, 87, 1079-1082 (2000).
    [7] K.N. Kim, H.K. Jung, H.D. Park, D. Kim, High luminance of new green emitting phosphor, Mg2SnO4: Mn, Journal of luminescence, 99, 169-173 (2002).
    [8] C.A. Kodaira, H.F. Brito, M.C.F. Felinto, Luminescence investigation of Eu3+ ion in the RE2(WO4)3 matrix (RE = La and Gd) produced using the Pechini method, Journal of Solid State Chemistry, 171, 401-407 (2003).
    [9] F. Lei, B. Yan, Hydrothermal synthesis and luminescence of CaMO4: RE3+ (M = W, Mo; RE = Eu, Tb) submicro-phosphors, Journal of Solid State Chemistry, 181, 855-862 (2008).
    [10] M. Nazarov, D. Jeon, J. Kang, E.J. Popovici, L.E. Muresan, M. Zamoryanskaya, B. Tsukerblat, Luminescence properties of europium–terbium double activated calcium tungstate phosphor, Solid State Communications, 131, 307-311 (2004).
    [11] M. Maczka, W. Paraguassu, A. Souza Filho, P. Freire, J. Mendes Filho, J. Hanuza, Phonon-instability-driven phase transitions in ferroelectric Bi2WO6: Eu3+: high-pressure Raman and photoluminescence studies, Physical Review B, 77, 094137 (2008).
    [12] F.S. Wen, X. Zhao, H. Huo, J.S. Chen, E.S. Lin, J.H. Zhang, Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4, Materials Letters, 55, 152-157 (2002).
    [13] G.J. McCarthy, R.D. Fischer, Synthesis and X-ray study of fluorite related phases in the system Ho2O3-WO3, Materials Research Bulletin, 6, 591-602 (1971).
    [14] M. Yoshimura, F. Sibieude, A. Rouanet, M. Foex, Identification of binary compounds in the system Ce2O3-WO3, Journal of Solid State Chemistry, 16, 219-232 (1976).
    [15] K. Kuribayashi, T. Sata, Processes in the reaction of Y2O3 with WO3, Bulletin of the Chemical Society of Japan, 50, 2932-2934 (1977).
    [16] D. Gao, Y. Li, X. Lai, Y. Wei, J. Bi, Y. Li, M. Liu, Fabrication and luminescence properties of Dy3+ doped CaMoO4 powders, Materials Chemistry and Physics, 126, 391-397 (2011).
    [17] X. Li, Z. Yang, L. Guan, J. Guo, Y. Wang, Q. Guo, Synthesis and luminescent properties of CaMoO4:Tb3+, R+ (Li+, Na+, K+), Journal of Alloys and Compounds, 478, 684-686 (2009).
    [18] Z.J. Zhang, H.H. Chen, X.X. Yang, J.T. Zhao, Preparation and luminescent properties of Eu3+ and Tb3+ ions in the host of CaMoO4, Materials Science and Engineering: B, 145, 34-40 (2007).
    [19] Y. Su, L. Li, G. Li, Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Codoping of Eu3+ and Na+, Chemistry of Materials, 20, 6060-6067 (2008).
    [20] F.B. Cao, Y.W. Tian, Y.J. Chen, L.J. Xiao, Q. Wu, Luminescence investigation of red phosphors Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y(WO4)1−y for UV-white LED device, Journal of Luminescence, 129, 585-588 (2009).
    [21] S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid state lighting; the system BixLn1−xVO4; Eu3+/Sm3+ (Ln = Y, Gd), Solid State Communications, 131, 65-69 (2004).
    [22] S. Ye, C.H. Wang, X.P. Jing, Long wavelength extension of the excitation band of LiEuMo2O8 phosphor with Bi3+ doping, Journal of The Electrochemical Society, 156, J121-J124 (2009).
    [23] D. Vij, Luminescence of solids, Springer Science & Business Media, (2012).
    [24] W. Brütting, Introduction to the physics of organic semiconductors, Wiley Online Library, (2006).
    [25] J.A. DeLuca, An introduction to luminescence in inorganic solids, ACS Publications, (1980).
    [26] 楊智量,藉pH值控制混合之固相反應製備的YAG: Ce粉體分析及其螢光性質,成功大學資源工程學系學位論文,(2005)。
    [27] 陳俞仲,錫酸鹽M2SnO4 (M = Ca, Sr, Zn) 螢光粉之合成與螢光特性研究,成功大學材料科學及工程學系學位論文,(2006)。
    [28] 張永政,矽酸鹽 Na3YSi2O7 系螢光粉之製備與光致發光特性研究,成功大學材料科學及工程學系學位論文,(2010)。
    [29] M.W.D.a.T.F.S. University, Jablonski Energy Diagram, (1995).
    [30] 李育群,鍺酸鹽 LaAlGe2O7螢光粉光致發光特性研究,成功大學材料科學及工程學系學位論文,(2007)。
    [31] 劉如熹,紀喨勝,紫外光發光二極體用螢光粉介紹,全華,(2005)。
    [32] H.S. Nalwa, L.S. Rohwer, Handbook of luminescence, display materials, and devices. Vol. 1, Organic light-emitting diodes, American scientific publishers, (2003).
    [33] S.S.a.W. Yen, Phosphor Handbook, CRC Press, (1999).
    [34] A. Kenyon, Recent developments in rare-earth doped materials for optoelectronics, Progress in Quantum Electronics, 26, 225-284 (2002).
    [35] B. Henderson, G.F. Imbusch, Optical spectroscopy of inorganic solids, ed., Oxford University Press, (2006).
    [36] B. Dibartolo, Energy transfer processes in condensed matter, Springer Science & Business Media, (2012).
    [37] G. Blasse, K. Bleijenberg, R. Powell, Luminescence and energy transfer, (1980).
    [38] A.H. Kitai, Solid state luminescence: Theory, materials and devices, Springer Science & Business Media, (2012).
    [39] 楊俊英,電子產業用螢光材料之應用調查,工研院,(1992)。
    [40] G. Blasse, J. Karl, A. Gschneidner, Handbook on the physics and chemistry of rare earths, by KA Gschneider, Jr. and L. Eyring, Norths-Holland, Amsterdam, 4, 237 (1979).
    [41] R.C. Ropp, Luminescence and the solid state, Elsevier, (2013).
    [42] G. Blasse, B. Grabmaier, Luminescent materials, Springer Science & Business Media, (2012).
    [43] L. Jones, P. Atkins, P.A. Loretta Jones, Chemistry: molecules, matter, and change, (1999).
    [44] 蘇鏘,稀土化學,鄭州: 河南科學技術出版社,(1993)。
    [45] 蘇鏘,稀土化學,北京: 清華大學出版社,(2000)。
    [46] S.A. Yan, Y.S. Chang, W.S. Hwang, Y.H. Chang, M. Yoshimura, C.S. Hwang, Synthesis and photoluminescence properties of color-tunable BaLa2WO7:Eu3+ phosphor, Journal of Alloys and Compounds, 509, 5777-5782 (2011).
    [47] K. Tkáčová, Mechanical activation of minerals, Veda, (1989).
    [48] L.A. Moreno, Absolute quantum yield measurement of powder samples, Journal of Visualized Experiments: JoVE, 3066 (2012).
    [49] T. Utigard, The properties and uses of fluxes in molten aluminum processing, JOM Journal of the Minerals, Metals and Materials Society, 50, 38-43 (1998).
    [50] X. Yang, W. Tang, H. Kanoh, K. Ooi, Synthesis of lithium manganese oxide in different lithium-containing fluxes, Journal of Materials Chemistry, 9, 2683-2690 (1999).
    [51] H.J. Lee, K.P. Kim, G.Y. Hong, J.S. Yoo, The effect of flux materials on the physical and optical properties of Eu3+-activated yttrium oxide phosphors, Journal of Luminescence, 130, 941-946 (2010).
    [52] H.S. Kang, Y.C. Kang, K.Y. Jung, S.B. Park, Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis, Materials Science and Engineering: B, 121, 81-85 (2005).
    [53] Y. Chen, M. Gong, K.W. Cheah, Effects of fluxes on the synthesis of Ca3Sc2Si3O12: Ce3+ green phosphors for white light-emitting diodes, Materials Science and Engineering: B, 166, 24-27 (2010).
    [54] L. Liu, R.J. Xie, C. Zhang, N. Hirosaki, Role of fluxes in optimizing the optical properties of Sr0.95Si2O2N2:0.05Eu2+ green-emitting phosphor, Materials, 6, 2862 (2013).
    [55] G. Li, J. Chen, Z. Mao, W. Song, T. Sun, D. Wang, Atmospheric pressure preparation of red-emitting CaAlSiN3:Eu2+ phosphors with variable fluxes and their photoluminescence properties, Ceramics International, 42, 1756-1761 (2016).
    [56] Q. Wang, Y. Dong, Q. Shao, X. Teng, J. Jiang, The effect of Li3N flux on properties of Sr2Si5N8:Eu2+ phosphor, Materials & Design, 95, 618-622 (2016).
    [57] A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia, J. Gisby, Development of fluoride-free fluxes for billet casting, ISIJ International, 45, 1051-1058 (2005).
    [58] D.S. Robertson, B. Cockayne, Growth of single‐crystal calcium tungstate using the traveling solvent method, Journal of Applied Physics, 37, 927-928 (1966).
    [59] O. Shuji, H. Minoru, Growth of CaWO4 crystals from M2WO4(M = Li, Na, and K) fluxes, Bulletin of the Chemical Society of Japan, 63, 2721-2723 (1990).
    [60] A. Khanna, P.S. Dutta, CaWO4 : Eu3+, Dy3+, Tb3+ phosphor crystals for solid-state lighting applications, ECS Transactions, 41, 39-48 (2012).
    [61] M. Daub, A.J. Lehner, H.A. Hoppe, Synthesis, crystal structure and optical properties of Na2RE(PO4)(WO4) (RE = Y, Tb-Lu), Dalton Transactions, 41, 12121-12128 (2012).
    [62] A. Kania, E. Talik, M. Szubka, W. Ryba-Romanowski, A. Niewiadomski, S. Miga, M. Pawlik, Characterization of Bi2WO6 single crystals by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and optical absorption, Journal of Alloys and Compounds, 654, 467-474 (2016).
    [63] A. Lashtabeg, J. Bradley, A. Dicks, G. Auchterlonie, J. Drennan, Structural and conductivity studies of Y10−xLaxW2O21, Journal of Solid State Chemistry, 183, 1095-1101 (2010).
    [64] G. Bandurkin, N. Chudinova, G. Lysanova, V. Krut’ko, M. Komova, Nanostructuring in the process of formation of rare-earth tungstates, Russian journal of inorganic chemistry, 51, 429-437 (2006).
    [65] D. Bevan, J. Drennan, H. Rossell, Structure determination of the fluorite-related superstructure phases Er10W2O21 and Y10W2O21, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 38, 2991-2997 (1982).
    [66] X. Feng, Q. Meng, B. Chen, S. Lu, J. Sun, H. Ding, Study on luminescent properties of Eu3+ doped new type yttrium tungsten oxide nanophosphors, Journal of Nanoscience and Nanotechnology, 11, 9780-9786 (2011).
    [67] M. Yoshimura, J. Ma, M. Kakihana, Low‐temperature synthesis of cubic and rhombohedral Y6WO12 by a polymerized complex method, J. Am. Ceram. Soc., 81, 2721-2724 (1998).
    [68] T.C. Chien, C.S. Hwang, M. Yoshimura, Y.T. Nien, Synthesis and photoluminescence properties of fluorite-related (Y1−xEux)10W2O21 phosphor, Ceramics International, 41, 155-161 (2015).
    [69] B.K. Datta, Powder Metallurgy: An advanced technique of processing engineering materials, ed., PHI Learning Pvt. Ltd., (2014).
    [70] JCPDS standard card No. 76-1153.
    [71] F. Shi, J. Meng, Y. Ren, Structure and luminescent properties of three new silver lanthanide molybdates, Journal of Solid State Chemistry, 121, 236-239 (1996).
    [72] C.H. Chiu, C.H. Liu, S.B. Huang, T.M. Chen, Synthesis and luminescence properties of intensely red-emitting M5Eu(WO4)4−x(MoO4)x (M = Li, Na, K) phosphors, Journal of The Electrochemical Society, 155, J71-J78 (2008).
    [73] P.F.S. Pereira, A.P. de Moura, I.C. Nogueira, M.V.S. Lima, E. Longo, P.C. de Sousa Filho, O.A. Serra, E.J. Nassar, I.L.V. Rosa, Study of the annealing temperature effect on the structural and luminescent properties of SrWO4:Eu phosphors prepared by a non-hydrolytic sol–gel process, Journal of Alloys and Compounds, 526, 11-21 (2012).
    [74] 杜志輝,Zn2SiO4掺雜銪螢光體之發光特性研究,臺北科技大學材料及資源工程系研究所學位論文,(2005)。
    [75] G. Blasse, Energy transfer between inequivalent Eu2+ ions, Journal of Solid State Chemistry, 62, 207-211 (1986).
    [76] G. Blasse, Energy transfer in oxidic phosphors, Physics Letters A, 28, 444-445 (1968).
    [77] S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini, G. Fagherazzi, Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis, Journal of Materials Chemistry, 12, 742-747 (2002).
    [78] E. Oomen, A.M.A. Van Dongen, Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition, Journal of Non-Crystalline Solids, 111, 205-213 (1989).
    [79] 郭弘毅,釔鋁石榴石結構螢光粉之光學性質及其應用於提升白光發光二極體之演色性,成功大學電機工程學系學位論文,(2012)。
    [80] 羅至良,Y6WO12: Eu3+ 螢光粉體之共沉澱法製備及其發光特性之研究,成功大學材料科學及工程學系學位論文,(2015)。
    [81] H. Li, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, H.S. Lee, S.S. Yi, Investigation of the structure and photoluminescence properties of Eu3+ ion-activated Y6WxMo(1−x)O12, Journal of Materials Chemistry, 21, 4531-4537 (2011).
    [82] F. Cheviré, F. Muñoz, C.F. Baker, F. Tessier, O. Larcher, S. Boujday, C. Colbeau-Justin, R. Marchand, UV absorption properties of ceria-modified compositions within the fluorite-type solid solution CeO2–Y6WO12, Journal of Solid State Chemistry, 179, 3184-3190 (2006).
    [83] L. Li, S. Zhang, Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds, The Journal of Physical Chemistry B, 110, 21438-21443 (2006).
    [84] X. Liu, L. Li, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, Chemical bond properties and charge transfer bands of O2−–Eu3+, O2−–Mo6+ and O2−–W6+ in Eu3+-doped garnet hosts Ln3M5O12 and ABO4 molybdate and tungstate phosphors, Dalton Transactions, 43, 8814-8825 (2014).
    [85] X. Wang, J.H. Li, Q.R. Shen, P.L. Shi, Flux-grown Y3Al5O12: Ce3+ phosphors with improved crystallinity and dispersibility, Ceramics International, 40, 15313-15317 (2014).
    [86] F. Duault, M. Junker, P. Grosseau, B. Guilhot, P. Iacconi, B. Moine, Effect of different fluxes on the morphology of the LaPO4: Ce, Tb phosphor, Powder Technology, 154, 132-137 (2005).
    [87] Y.C. Kang, E.J. Kim, D.Y. Lee, H.D. Park, High brightness LaPO4: Ce,Tb phosphor particles with spherical shape, Journal of Alloys and Compounds, 347, 266-270 (2002).
    [88] T.H. Cho, H.J. Chang, Preparation and characterizations of Zn2SiO4: Mn green phosphors, Ceramics International, 29, 611-618 (2003).
    [89] 楊基淳,Y6WO12: Eu3+ 螢光粉體之製備及發光特性研究,成功大學材料科學及工程學系學位論文,(2011)。
    [90] 齊振銓,助熔劑對Y6WO12: Eu3+ 螢光粉體光致發光性質之影響,成功大學材料科學及工程學系學位論文,(2013)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE