| 研究生: |
林思慧 Lin, Ssu-Hui |
|---|---|
| 論文名稱: |
Lovastatin抗腫瘤活性之探討 The anticancer activity of lovastatin |
| 指導教授: |
李益謙
Li, I-Chien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 抗癌活性 、細胞凋亡 、血管新生 |
| 外文關鍵詞: | lovastatin, angiogenesis, apoptosis, antitumor |
| 相關次數: | 點閱:117 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Lovastatin為膽固醇生合成途徑Mevalonate pathway中限速酶(HMG-CoA reductase)的競爭性抑制劑,目前臨床上用於治療高血脂。Mevalonate為異戊二烯代謝物(Isoprenoids)生合成途徑上之共同前驅物。研究發現,阻斷一些訊息蛋白的異戊二烯化(isoprenylation)會影響細胞的生理功能,如:生長、分化與凋亡,因而利用正常與腫瘤細胞在此方面的差異,可能可以達到選擇性抑制腫瘤之生長。本研究將探討lovastatin在體內及體外實驗的抗癌活性。
首先,在體外細胞毒殺實驗方面,lovastatin對於ML1-4a、LLC、SW480等癌細胞株皆具有抑制作用。再分別利用Hoechst 33258細胞核染色法、流式細胞儀及DNA fragmentation assay進行分析,發現lovastatin對於ML1-4a、LLC、SW480等癌細胞株之生長抑制機制為促進癌細胞產生凋亡所造成。體內癌細胞的擴散,係藉著原位癌周圍異常的血管新生(angiogenesis),使癌細胞得以隨血液循環轉移(metastasis)至其他器官。因此,我們亦測試lovastatin對癌細胞的及血管內皮細胞的移行是否具有抑制效果。在細胞移行分析(cell migration assay)實驗中,發現lovastatin對PC-3及牛大動脈內皮細胞(bovine aortic endothelial cell)的細胞移行具有隨劑量遞增的抑制效果。在活體實驗部份,於雞胚胎絨毛膜血管形成試驗(chorioallantoic membrane assay)中,發現lovastatin在半活體內亦可以抑制雞胚胎血管新生。另外,對於LLC、ML1-4a所誘發之小鼠原位腫瘤模式中,也發現Lovastatin可抑制腫瘤之生長,進一步將小鼠腫瘤取下進行冷凍包埋,以免疫組織化學染色( immunohistochemical analysis )的方式,證明給予Lovastatin的老鼠腫瘤中的確有抑制腫瘤血管新生的情形。
3-Hydroxy-3methylglutaryl-CoA (HMG-CoA) reductase is a rate- limiting enzyme in the mevalonate pathway, which produces a diverse array of end products that are vital for a variety of cellular functions, including cholesterol synthesis and cell cycle progression. Lovastatin, one of the HMG-CoA reductase inhibitors, has been reported to induce apoptotic response in certain tumor cell lines. This study aims at characterizing further the anti-tumor activity of lovastatin.
Lovastatin is found to possess anti-tumor activities in a dose-dependent manner against a wide variety of tumor cell lines tested. The flow cytometry, DNA fragmentation and Hoechst 33258 assays all show that lovasatin induces apoptosis, also in a dose-dependent manner and time-dependent manner. In the PC-3 (human prostate cancer cell) migration assay lovastatin is found to inhibit tumor cell migration. In the BAEC (bovine aortic endothelial cell) migration assay and chicken chorioallantoic membrane (CAM) assay lovastatin is found to inhibit both cell migration and vascular formation. The anticancer activity of lovastatin in the established animal model is as the following. In the transplanted tumor model lovastatin is found to significantly retard the growths of either LLC (Lewis lung carcinoma) tumor in C57/BL6 animals and ML1-4a (mice hepatoma) tumor in Balb/cj animals. Finally, by an immuno-histochemical analysis that specifically identifies epithelial cells in tumor, we demonstrate that lovastatin does possess anti-angiogenic property in vivo, that accounts for, in part its anticancer activity.
1. Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26: 239-57 (1972).
2. Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science. 267: 1456–62 (1995).
3. Reed, J. C., and Tomaselli, K. J. Drug discovery opportunities from apoptotic research. Curr. Opin. Biotechnol. 11: 586–92 (2000).
4. Fadeel, B., Orrenius, S., and Zhivotovsky, B. Apoptosis in human disease: a new skin for the old ceremony? Biochem. Biophys. Res. Commun. 266: 699–717 (1999).
5. Vermes, I., Haanen, C., and Reutelingsperger, C. Flow cytometry of apoptotic cell death. J. Immunol. Methods. 243: 167-90(2000).
6. Schwartzman, R. A., and Cidlowski, J. A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr. Rev. 14: 133–51 (1993).
7. Hale, A. J., Smith, C. A., Sutherland, L. C., Stoneman, V. E., Longthorne, V. L., Culhane, A. C., and Williams, G. T. Apoptosis: molecular regulation of cell death. Eur. J. Biochem. 236: 1–26 (1996).
8. Saraste, A., and Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiol. Res. 45: 528–37 (2000).
9. Folkman, J. Harrison’s Principle Internal Medicine Fifteen edition
Angiogenesis p517-530 Mcgraw-Hill 2001.
10. Ellis, L. M., and Fidler., I. J. Angiogenesis and metastasis. Eur. J. Cancer. 32A: 2451-60 (1996)
11. Folkman, J., and Shing, Y. Angiogenesis. J. Biol. Chem. 267(16): 10931-4. (1992).
12. Ausprunk, D. H., and Folkman, J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14: 53-65 (1977).
13. Folkman, J., and Haudenschild, C. Angiogenesis in vitro. Nature. 288: 551-6 (1980).
14. Folkman, J. What is the role of endothelial cells in angiogenesis? Lab. Invest. 51: 601-4 (1984).
15. Rastinejad, F., and Polverini, P. J. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell. 56: 345-55 (1989).
16. Cameliet, P., and Jain, R. K. Angiogenesis in cancer and other disease. Nature. 407: 249-257 (2000).
17. Ramsden, J. D. Angiogenesis in the thyroid gland. J. Endocrinol. 166: 475-80 (2000).
18. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1: 27-31 (1995).
19. Folkman, J., Haudenschild, C. C., and Zetter, B. R. Long-term culture of
capillary endothelial cells. Proc. Natl. Acad. Sci. USA 76: 5217-5221 (1979).
20. Vailhe, B., Vittet, D., and Feige, J. J. In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81: 439-452 (2001).
21. Goldstein, J. L., and Brown, M. S. Regulation of the mevalonate pathway. Nature. 343(6257): 425-30 (1990).
22. Komoda, M., Shimizu, M., Sonoda, Y., and Sato, Y. Ganoderic acid and its derivative as cholesterol synthesis inhibitors. Chem. Pharm. Bull. 37: 531-533 (1989).
23. Casey, P. J., and Seabra, M. Protein prenyltransferase. J. Biol. Chem., 271: 5289-5292 (1996).
24. Rando, R. R. Chemical biology of protein isoprenylation / methylation. Biochim. Biophys. Acta. 1300: 5-16 (1996).
25. Jakobisiak, M., Bruno, S., Skierski, J. S., and Darzynkiewicz, Z. Cell cycle-specific effects of lovastatin. Proc. Natl. Acad. Sci. USA. 88: 3628-3632 (1991).
26. Keyomarsi, K., Sandoval, L., Band, V., and Pardee, A. B. Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 51: 3602-3609 (1991).
27. Siperstein, M. D. Role of cholesterogenesis and isoprenoid synthesis in DNA replication and cell growth. J. Lipid Res. 25: 1462-1468 (1984).
28. Jones, K. D., Coouldwell, W. T., Hinton, D. R., Su, Y., He, S., Auker, L. and Law, R. E. Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem. Biophys. Res. Comm., 205: 1681-1687 (1994).
29. Padayatty, S. J., Marcelli, M., Shao, T. C., and Cunningham, G. R. Lovastatin-induced apoptosis in Prostate stromal cells. J. Clin. Endocrinol. Metab., 82: 1434-1439 (1997).
30. Reedquist, K. A., Pope, T. K., and Roess, D. A. Lovastatin inhibits proliferation and differentiation and causes apoptosis in lipopolysacch aride-stimulated murine B cells. Biochem. Biophys. Res.Comm., 211: 665-670 (1995).
31. Kohl, N. E., Wilson F. R., Mosser, S. D., Giuliani, E., Desolms, S. J., Giuliani, L. A., Gomez, R. P., Graham, S. L., Hamilton, K., Haudt, L. K., Hartman, G. D., Koblan, K. S., Karl, A. M., Miller, P. J., Mosser, S. D., O’Neill, T. J., Rands, E., Schaber, M. D., Gibbs, J. B. and Oliff, A. Inhibition of salivary carcinomas in ras transgenic mice. Nat. Med. 1: 792-797 (1995).
32. Kohl, N. E., Wilson, F. R., Mosser, S. D., Ginliani, E., Desolms, S. J., Conner, M. W., Anthony, N. J., Holtz, W. J., Gomez, R. P., Lee, T. J., Smith, R. L., Graham, S. L., Hartman, G. D., Gibbs, J. B., and Oliff, A. Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc. Natl. Acad. Sci. USA. 91: 9141-9145 (1994).
33. Maltese, W. A. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase in human brain tumors. Neurology 33: 1294-1299 (1983).
34. Fumagalli, R., Grossi, E., Paoletti, P., and Paoletti, R. Studies on lipids in brain tumor. J. Neurochem. 11: 561-565 (1994).
35. Maltese, W. A. Induction of differentiation in murine neuroblastoma cells by mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl- coenzyme A reductase. Biochem. Biophys. Res. Comm. 120: 454-460. (1984).
36. Sumino, K., Hiroki, K., Hiroshi, I., Eiji, Y., Yoshiaki, I., and Yuji, M. Effect of pravastatin, a potent 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, on survival of AH130 hepatoma-bearing rats. Jpn. J. Cancer Res. 83: 1120-1123 (1992).
37. Jones, K. D., Coouldwell, W. T., Hinton, D. R., Su, Y., He, S., Auker, L., and Law, R. E. Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem. Biophys. Res. Comm. 205: 1681-1687 (1994).
38. Lee, S. J., Ha, M. J., Lee, J., Nguyen, P. M., Choi, Y. H., Pirnia, F., Kang, W. K., Wang, X. F., Kim, S. J., and Trepel, J. B., Inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme a reductase pathway induces p53- independent transcriptional regulation of p21waf1/cip1 in human prostate carcinoma cells. J. Biol. Chem. 237: 10618-10623 (1998).
39. Agarwal, B., Rao, C. V., Bhendwal, S., Ramey, W. R., Shirin, H., Reedy, B. S., and Holt, P. R. Lovastatin augments sulindac-induced apoptosis in colon cancer cells and potentiates chemopreventive effects of sulindac. Gastroenterology 117: 834-847 (1999).
40. Feleszko, W., Mlynarczuk, I., Olszewska, D., Jalili, A., Grzela, T., Lasek, W., Hoser, G., Korczak-kowalska, G., and Jakobisiak, M. Lovastatin potentiates antitumor activity of doxorubicin in murine melanoma via an apoptosis-dependent mechanism. Int. J. Cancer.100: 111-118 (2002).
41. Feleszko, W., Zagozdzon, R., Golab, J., and Jakobisiak, M. Potentiated antitumor effects of cisplatin and Lovastatin against MmB16 melanoma in mice. Eur. J. Cancer. 34: 406-411 (1998).
42. Stamenkovic, I. Matrix metalloproteinases in tumor invasion and metastasis. Semin. Cancer. Bio.l 10: 415-433 (2000).
43. Curran, S., and Murray, G. I. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur. J. Cancer. 36: 1621-1630 (2000).
44. Kimura, Y., and Okuda, H., Effects of naturally occurring stilbene glucosides from medicinal plants and wine, on tumour growth and lung metastasis in Lewis lung carcinoma-bearing mice. J. Pharm. Pharmacol. 52: 1287-95 (2000).
45. Maekawa, R., Maki, H., Wada, T., Yoshida, H., Nishida-Nishimoto, K., Okamoto, H., Matsumoto, Y., Tsuzuki, H., and Yoshioka, T. Anti-metastatic efficacy and safety of MMI-166, a selective matrix metalloproteinase inhibitor. Clin. Exp. Metasta. 18:61-6 (2000).
46. Hayes, A. J., Li, L. Y., and Lippman, M. E. Science, medicine, and the future. Antivascular therapy: a new approach to cancer treatment. BMJ. 318: 853-6 (1999).
47. O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H. and Folkman, J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 79: 315-28 (1994).
48. Hortobagyi, G. N. Recent progress in the clinical development of docetaxel (Taxotere). Semin. Oncol. 26: 32-6 (1999).
49. Kenyon, B. M., Voest, E. E., Chen, C. C., Flynn, E., Folkman, J. and D’ Amato, R. J. A model of angiogenesis in the mouse cornea. Invest. Ophthalmol. Vis. Sci. 37: 1625-32 (1996).
50. Nguyen, M., Shing, Y., and Folkman, J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47:31-40, (1994).
51. Maron, D. J., Fazio, S., and Linton, M. F. Current perspectives on statins. Circulation. 101: 207-213 (2000).
52. Koh, K. Effects of statins on vascular wall: vasomotor function, inflammation, and plaque stability. Cardiovasc. Res. 47: 648–657 (2000).
53. Weis, M., Pehlivanli, S., Meiser, B. M., von Scheidt, W. Simvastatin treatment is associated with improvement in coronary endothelial function and decreased cytokine activation after heart transplantation. J. Am. Coll. Cardiol. 38:814–818 (2001).
54. Weis, M., Heeschen, C., Glassford, A. J., and Cooke, J. P. Statins have biphasic effects on angiogenesis. Circulation. 105: 739-745 (2002).
55. Wagner, P. D. Skeletal muscle angiogenesis. A possible role for hypoxia. Adv. Exp. Med. Bio. 502:21-38 (2001)