簡易檢索 / 詳目顯示

研究生: 廖邑崇
Liao, Yi-Chong
論文名稱: 熱處理及助熔劑對水庫淤泥燒製輕質骨材之物理性質影響
Effects of heat treatment and fluxing agents on physical properties of lightweight aggregates from water reservoir sediment
指導教授: 黃紀嚴
Huang, Chi-Yen
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 95
中文關鍵詞: 水庫淤泥輕質骨材助熔劑膨脹行為密度
外文關鍵詞: water reservoir sediment, lightweight aggregate, flux, bloating behavior, density
相關次數: 點閱:165下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水庫淤泥添加不同種類之助熔劑離子製備輕質骨材,使用的助熔劑有氧化鈣、碳酸鈉、氫氧化鈉以及三氧化二鐵,結果顯示鈉鈣離子可增進淤泥在熱處理過程中玻璃相的形成,封閉骨材中的連通孔洞進而降低輕質骨材的吸水率,但是過多的玻璃相形成則是會降低骨材的強度並使骨材樣品沾黏於坩鍋之上,在取下後造成樣品破裂而使吸水率上升;在各種助熔劑的添加下,鈉離子可大幅度降低製造輕質骨材的燒製溫度,其中以氫氧化鈉製備之輕質骨材具有高強度的表現,因為氫氧化鈉可與水庫淤泥產生無機聚合反應,樣品經過熱硬化處理後,可形成無機聚合物,因此在高溫燒製時,膨脹行為雖然發生但是樣品仍具有高強度的表現;添加三氧化二鐵無法增進膨脹行為的發生,在體密度的量測結果中顯示添加三氧化二鐵之樣品並無具有低密度表現,其密度表現與水庫淤泥原樣製成之骨材雷同,經由X光繞射分析後亦無發現任何方鐵礦(FeO)的存在,僅有赤鐵礦(Fe2O3)的存在,表示三氧化二鐵沒有發生任何氧化還原反應產生氧氣促進膨脹行為;製造骨材的熱處理條件以快速升溫(15 ºC/min)及長時持溫(30 min)較佳,因為快速升溫可使淤泥在燒製時,增加有機物造成的殘碳量,增加氣體的產生量,而長時持溫可確保膨脹行為發生完整,製得具有低密度之骨材。

    Lightweight aggregates were produced from water reservoir sediment with various added flux agents including CaO, Na2CO3, NaOH, and Fe2O3. The result shows that Ca2+ and Na+ ions promoted the formation of glassy phase sealing the connecting pores in lightweight aggregates, reducing the water absorption of aggregates. More amount of glassy phase decreased the strength of aggregates and resulted in samples sticking to crucible. When the samples were taken off, the cracks was produced which increased the water absorption. Comparison to each flux ion, sodium ion substantially decreased the firing temperature for manufacturing lightweight aggregates. The aggregates produced from the sediment with added NaOH owned high strength performance due to the formation of geopolymer after the pre-curing process of the mixtures. The samples owned the property of geopolymer owning high strength performance though the bloating behavior occurred. The measurement of bulk density shows that the addition of Fe2O3 can not promote the bloating behavior, the bulk densities of the sample with added Fe2O3 are similar with those of samples without any added Fe2O3. Fe2O3 did not reduce into FeO to produce O2 gas, promoting bloating behavior, since no wuestite was found in XRD measurement, but hematite. The suitable condition for manuscript lightweight aggregates is employing faster heating rate (15 ºC/min) and longer duration time (30min), because faster heating rate results in more residue of carbon from the decomposition of organic matters increasing the production of gas and longer duration time results in a completing bloating behavior to produce aggregates with low bulk density.

    摘要…………………………………………………………………………………….I Abstract ………………………………………………………………………………II 致謝…………………………………………………………………………………..III 目錄…...……………………………………………………………………………...IV 表目錄...…………………………………...…………………………………………VI 圖目錄...…………………..………………………………………………………...VII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 理論基礎及文獻探討 4 2-1水庫簡介 4 2-2 淤泥脫水技術 9 2-3 輕質骨材 14 2-3-1輕質骨材介紹 14 2-3-2 膨脹機制 15 2-3-3 燒製型輕質骨材之相關研究 16 2-3-4 國內外專利核發以及研究狀況 22 2-3-5 天然砂石與輕質骨材之市場現況 24 2-4 無機聚合物 25 2-4-1 無機聚合物介紹 25 2-4-2 製備無機聚合物之相關文獻 26 第三章 實驗原料及步驟 30 3-1 實驗原料 30 3-1-1水庫淤泥 30 3-1-2 化學藥劑 32 3-2 實驗流程 32 3-2-1 氧化鈣添加對輕質骨材的物理性質影響 33 3-2-2 熱處理條件對燒製輕質骨材的影響 33 3-2-3 碳酸鈉添加對燒製輕質骨材的影響 34 3-2-4 氫氧化鈉添加對燒製輕質骨材的影響 35 3-2-5 助熔劑離子對輕質骨材之膨脹行為的影響 36 3-3 性質分析及檢測儀器 36 第四章 結果與討論 39 4-1 氧化鈣添加對輕質骨材之性質影響 39 4-2 熱處理條件對燒製輕質骨材之影響 49 4-3 碳酸鈉添加對輕質骨材之性質影響 57 4-4 氫氧化鈉添加對輕質骨材之性質影響 63 4-5 助熔劑離子對於輕質骨材之膨脹行為影響 70 第五章 結論與建議 78 5-1結論 78 5-2建議 79 參考文獻 80 附錄 A 輕質骨材特性及相關規範 86 附錄 B 國內輕質骨材之相關專利 87 附錄 C 美國輕質骨材之相關專利 88 附錄 D 轉爐碴介紹[46] 89 個人著作表 93 自述…………………………………………………………………………………..95

    [1] 經濟部水利署,http://www.wra.gov.tw/
    [2] 蔡昌宏,「燒結型輕質骨材混凝土工程性質之研究」,碩士論文,國立台灣科技大學營建工程研究所 (2001)。
    [3] K. Imhoff and G.M. Fair, “Sewage Treatment,” John Wiley & Sons (1940).
    [4] B.R. Gurjar, “Sludge Treatment and Disposal,” A.A. Balkena pubishers (2001).
    [5] N.P. Cheremisinoff and P. N. Cheremisinoff, “Filtration Equipment for Wastewater Treatment,” Prentice Hall (1993).
    [6] C.M. Riley, “Relation of chemical properties to the bloating of clays,” Journal of American Ceramic Society 34(4), 121-128 (1951).
    [7] 顏聰及黃兆龍,「水庫淤泥輕質骨材產製及輕質材混凝土應用與推廣」,內政部建築研究所補助研究報告 (2003)。
    [8] C.R. Cheeseman, S. Monteiro da Rocha, C. Sollars, S. Bethanis and A.R. Boccaccini, “Ceramic processing of incinerator bottom ash,” Waste Management 23, 907-916 (2003).
    [9] C.R. Cheeseman, A. Makinde and S. Bethanis, “Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash,” Resources Conservation & Recycling 43, 147-162 (2005).
    [10] S.G. Hu, T.T. Yang, and F.Z. Wang, “Influence of mineralogical composition on the properties of lightweight aggregate,” Cement and Concrete composites 32, 15-18 (2010).
    [11] K. Laursen, T.J. White, D.J.F. Cresswell, P.J. Wainwright and J.R. Barton, “Recycling of an industrial sludge and marine clay as light-weight aggregates,” Journal of Environmental Management 80, 208-213 (2006).
    [12] S.C. Huang, F.C. Chang, S.L. Lo, M.Y. Lee, C.F. Wang and J.D. Lin, “Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash,”Journal of Hazardous Materials 144, 52-58 (2007).
    [13] I.J. Chiou, K.S. Wang, C.H. Chen and Y.T. Lin, “Lightweight aggregate made from sewage sludge and incinerated ash,” Waste Management 26, 1453-1461 (2006).
    [14] 楊志正及王鯤生,「下水污泥焚化灰細度變化與矽氧晶相對燒成輕質骨材輕質化之影響」,國立中央大學環境工程研究所,碩士論文 (2001)。
    [15] 郭玉順、王征及丁建彤,「粉煤灰燒脹陶粒的化學成分、膨脹氣體與性能關係的研究」,北京清華大學土木水利學院建築材料研究所 (2003)。
    [16] R. de’Gennaro, P. Cappelletti, G. Cerri, M. de’Gennaro, M. Dondi, S.F. Graziano and A. Langella, “Campanian ignimbrite as raw material for lightweight aggregates,” Applied Clay Science 37, 115-126 (2007).
    [17] C.T. Liaw, H.L. Chang, W.C. Hsu and C.R. Huang, “A novel method to reuse paper sludge and co-generation ashes from paper mill,” Journal of Hazardous Materials 58, 93-102 (1998).
    [18] C.C. Tsai, K.S. Wang and I.I. Chiou, “Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge,” Journal of Hazardous Materials B134, 87-93 (2006).
    [19] F.C. Chang, S.L. Lo, M.Y. Lee, C.H. Ko, J.D. Lin, S.C. Huang and C.F. Wang, “Leachability of metals from sludge-based artificial lightweight aggregate,” Journal of Hazardous Materials 146, 98-105 (2007).
    [20] X.R. Wang, Y.Y. Jin, Z.Y. Wang, Y.F. Nie, Q.F. Haung and Q. Wang, “Development of lightweight aggregate from dry sewage sludge and coal ash,” Waster Management 29, 1330-1335 (2009).
    [21] I.M. Anagostopoulos and V.E. Stivanakis, “Utilization of lignite power generation residues for the production of lightweight aggregates,” Journal of Hazardous Materials 163, 329-336 (2009).
    [22] K.J. Mun, “Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete,” Construction and Building Materials 21, 1583-1588 (2007).
    [23] D. Fragoulis, M.G. Stamatakis, E. Chaniotakis and G. Columbus, “Characterization of lightweight aggregates produced with clayey diatomite rocks originating from Greece,” Materials Characterization 53, 307– 316 (2004).
    [24] H.J. Chen, S.Y. Wang and C.. Tang, “Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate,” Construction and Building Materials 24, 46-55 (2010).
    [25] Y.L. Wei, J.C. Yang, Y.Y. Lin, S.Y. Chuang and H.P. Wang, “Recycling of harbor sediment as lightweight aggregate,” Marine Pollution Bulletin 57(6-12), 867-872 (2008).
    [26] 張家碩及黃紀嚴,「水庫淤泥燒製輕質骨材的燒結行為之研究」,國立成功大學資源研究所,碩士論文 (2005)。
    [27] 蔡尚晏及黃紀嚴,「水庫淤泥添加玻璃粉燒製輕質骨材之研究」,國立成功大學資源研究所,碩士論文 (2008)。
    [28] P. Chindaprasirt, C. Jaturapitakkul and U. Rattanasak, “Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate,” Fuel 88(1), 158-162 (2009).
    [29] A. Mueller, S.N. Sokolova and V.I. Vereshagin, “Characteristics of lightweight aggregates from primary and recycled raw materials,” Construction and Building Materials 22(4) 703-712 (2008).
    [30] R. de’Gennaro, P. Cappelletti, G. Cerri, M. de’Gennaro, M. Dondi and A. Langella, “Zeolitic tuffs as raw materials for lightweight aggregates,” Applied Clay Science 25, 71-81 (2004).
    [31] R. de’Gennaro, A. Langella, M. D’Amore, M. Dondi, A. Colella, P. Cappelletti and M. de’Gennaro, “Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes,” Applied Clay Science 41(1-2) 61-72 (2008).
    [32] V.I. Vereshagin and S.N. Sokolova, “Granulated foam glass-ceramic material from zeolitic rocks,” Construction and Building Materials 22, 999-1003 (2008).
    [33] B.W. Jo, S.K. Park and J.B. Park, “Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA),” Cement & Concrete Composites 29, 128-135 (2007).
    [34] 經濟部礦務局,http://www.mine.gov.tw/
    [35] J. Davidovits, “Geopolymers: man-made rocks geosynthesis and the resulting development of very early high strength cement,” Journal of materials education 16, 91-139 (1994).
    [36] H. Wang, H. Li, F. Yan, “Synthesis and mechanical properties of metakaolinite-based geopolymer,” Colloids and surfaces A 268, 1-6 (2005).
    [37] P. Rovnaník, “Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer,” Construction and building materials 24, 1176-1183 (2010).
    [38] S. Songpiriyakij, T. Kubprasit, C. Jaturapitakkul, P. Chindaprasirt, “Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer,” Construction and building materials 24, 236-240 (2010).
    [39] P. D. Silva and K. Sagoe-crenstil, “Medium-term phase stability of Na2O-Al2O3-SiO2-H2O geopolymer systems,” Cement and concrete research 38, 870-876 (2008).
    [40] Z. Zuhua, Y. Xiao, Z. Huajun, C.Yue, “Role of water in the synthesis of calcined kaolin-based geopolymer,” Applied clay science 43, 218-223 (2009).
    [41] C. A. Rees, J. L. Provis, G. C. Lukey, J. S.J. van’Deventer, “The mechanism of geopolymer gel formation investigated through seeded nucleation,” Colloids and surface A 318, 97-105 (2008).
    [42] D. L.Y. Kong and J. G. Sanjayan, “Effect of elevated temperatures on geopolymer paste, mortar and concrete,” Cement and concrete research 40, 334-339 (2010).
    [43] P. Chindaprasirt, T. Chareerat, V. Sirivivatnanon, “Workability and strength of coarse high calcium fly ash geopolymer,” Cement and concrete composites 29, 224-229 (2007).
    [44] T.W. Cheng and J.P. Chiu, “Fire-resistant geopolymer produced by granulated blast furnace slag,” Minerals Engineering 16, 205-210 (2003).
    [45] T. Bakharev, “Resistance of geopolymer materials to acid attack,” Cement and concrete research 35, 658-670 (2005).
    [46] 楊智麟,煉鋼爐渣於瀝青混凝土之應用,中聯資源 (2009)。
    [47] A.M. Neville, “Properties of Concrete 4th ed,” Harlow, Longman (1994).
    [48] Y. Li, D. Wu, J. Zhang, L. Chang, Z. Fang, Y. Shi, “Measurement and statistics of single pellet mechanical strength of differently shaped catalysts,” Powder Technology 113, 176-184 (2000).
    [49] S. Yashima, Y. Kanda, S. Sano, “Relationship between particle size and fracture energy or impact velocity required to fracture as estimeated from single particle crushing” Powder Technology 51, 277-282 (1987).
    [50] W.H. Zhu, Y.F. Yin, L.H. Jiang, L.M. Che, “Study of micropore size distribution and its effect on the strength of silica fume cement phase,” Journal of Building Materials 7, 14-18 (2004).
    [51] M. Davraz, L. Gunduz, “Engineering properties of amorphous silica as a new natural pozzlan for use in concrete,” Cement and Concrete Research 35, 1251-1261 (2005).
    [52] L. Turanli, B. Uzal, F. Bektas, “Effect of material characterization on the properties of blended cements containing high volumes of natural pozzolans,” Cement and Concrete Research 34, 2277-2282 (2004).

    下載圖示 校內:2017-06-29公開
    校外:2017-06-29公開
    QR CODE