簡易檢索 / 詳目顯示

研究生: 傅燕楨
Fu, Yean-Chan
論文名稱: 多變量 ROC曲線下面積相似性和非劣性統計方法之研究
Statistical Methods for Equivalence and Non-inferiority Based on the Area Under Multivariate ROC Curves
指導教授: 馬瀰嘉
Ma, Mi-Jia
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 35
中文關鍵詞: 相似性非劣性多變量 ROC 曲線無母數方法
外文關鍵詞: non-inferiority, multivariate ROC curve, equivalence
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   通常利用 ROC曲線下面積來評估兩種診斷方法的相似性及非劣性檢定方法,且關於兩種診斷方法,在診斷的預測上是否有顯著差異的檢定,在過去的文獻已有提出相關的研究。
    若一新診斷方法與標準的診斷方法是相似的,而且在成本、
    使用方便性 (如非侵入性) 及安全性的考量下較優於標準方法,
    新診斷方法將可取代標準的診斷方法。在目前文獻上估計 ROC
    曲線下面積較好的方法是無母數法。本篇論文主要是考慮在同時使用多個診斷方法評估病患是否致病下,提出利用無母數法去評估相似性及非劣性的檢定方法,並以模擬結果比較其型 extrm{I} 誤發生機率和檢定力,並於最後提出一實例加以說明。

     There is an increased use of ROC
    curve for assessing a diagnostic efficacy of the
    equivalence/non-inferiority test, and a statistical tool which is popular for describing the accruacy of diagnostic is the receiver operating characteristic curve. The
    area under the ROC curve (AUROC) is a global measure of a test's accuracy. If the diagnostic accuracy of
    alternative procedure is equivalent to the gold standard invasive method, its easy administration, better safety profile and reduced cost of alternative procedure will be considered to instead of the standard method.
    It is possible that several diagnostic markers
    are used to detect a disease in medical diagnosis. In this paper,we propose a non-parametric method for assessing equivalence/non-inferiority test using the area under the multivariate ROC curve (AUMROC). A simulation study was
    conducted empirically to compute its empirical size and power. A real published dataset is used to illustrate the proposed procedure.

    1 Introduction 1 1.1 The Area Under ROC Curve 2 1.2 The Area Under Multivariate ROC Curve 4 1.3 Test for Equivalence or Non-inferiority 5 2 Literature Review 7 2.1 Analysis of Areas Under Correlated ROC Curves 7 2.2 Equivalence and Non-inferiority for Two AUROCs 9 3 Proposed Methods 11 3.1 Analysis of Areas Under Two Correlated Multivariate ROC Curves 14 3.2 Equivalence and Non-inferiority for Two AUMROCs 14 4 Simulation Study 15 4.1 Simulation Process and Parameter Combinations 15 4.2 Simulation Results 21 5 Example 67 6 Conclusion 69

    1. Bamber, D., The area above the ordinal dominance graph and the area below
    the receiver operating characteristic graph, extit{Journal of Mathematical
    Psychlolgy}, Vol12, 387-415, 1975.

    2. Blackwelder, W. C., Proving the null hypothesis in clinical trials,
    extit{Controlled Cliinical Trials}, Vol.3, 345-353, 1982.

    3. Chan, I. S. F., Proving non-inferiority or equivalence
    of two treatments with dichotomous endpoints exact methods,
    extit{Statistical Methods in Medical Research}, Vol.12, 37-56, 2003.

    4. Dawson-Saunders, B., & Trapp, R. G., extit{Basic and clinical
    biostatistics}., Norwalk, CT : Appleton & Lange, 1990.

    5. Dunnett, C. W. and Gent, M., Significance testing to establish
    equivalence between treatments with special reference to data in the
    form of $2 imes 2$ tables, extit{Biometrics}, Vol.33, 593-602, 1977.

    6. Emir, B. Wieand, S. Jung, S. H. and Ying, A., Comparison
    of diagnostic markers with reported measurements: a non-parametric
    ROC curve approach, extit{Statistics in Medicine}, Vol.19, 511-523,
    2000.

    7. Faraggi, D. and Reiser, B., Estimate of the area under
    the ROC curve, extit{Statistics in Medicine}, Vol.21, 3093-3106,2002.

    8. Farrington, C. P., and Manning, G., Test statistics and sample
    size formulae for comparative binormal trials with null hypothesis of
    non-zero risk difference of non-inferiority relative risk,
    extit{Statistics in Medicine}, Vol.9, 1447-1454, 1990.

    9. Hoeffding, W., A class of statistics with asymptotically normal
    distribution, extit{Annals of Mathematical Statistics}, Vol.19,
    293-325, 1984.

    10. Lewis JA. Statistical principles for clinical trials (ICH E9)
    an introductory note an international guideline, extit{Statistics
    in Medicine}, Vol.18, 1903-1942, 1999.

    11. Liu, J. P., Hsueh, H. M., Hsieh, E., and Chen, J.J., Tests
    for equivalence or non-inferiority for paired binary data,
    extit{Statistics in Medicine}, Vol.21, 231-245, 2002.

    12. Lu, Y., and Bean, J. A., On the sample size for one-sided
    equivalence of sensitivities based upon McNemar's test,
    extit{Statistics in Medicine}, Vol.14, 1831-1839, 1995.

    13. Luchenbruch, P. A., and Lynch, C. J., Assessing screening
    tests: extensions of McNemar's test, extit{Statistics in Medicine},
    Vol.17, 2207-2217, 1998.

    14. Ma, Chen and Liu, On the Equivalence and Non-inferiority for
    the Areas of Two ROC Curves, 2003.

    15. Metz, C. E., Basic principles of ROC analysis, extit{Seminars
    in Nuclear Medicine} VIII, 283-298, 1978.

    16. Nam, J-m., Establishing equivalence of two treatments and
    sample size requirements in matched-pairs design, extit{Biometrics},
    Vol.17, 1422-1430, 1997.

    17. Obuchowski, N. A. and Rockette, H. E., Computing sample size for
    receiver operating characteristic studies, extit{Investigative Radiology},
    Vol.29, 238-243, 1995.

    18. Ou, and Ma, The estimation of the area under multivariate ROC curve, 2003.

    19. Tu, D., A comparative study of some statistical procedures in establishing
    therapeutic equivalence of nonsystemic drugs with binary endpoints,
    extit{Drug Information Journal}, Vol.31, 1291-1300, 1997.

    下載圖示 校內:立即公開
    校外:2005-07-15公開
    QR CODE