| 研究生: |
陳宥佐 Chen, Yu-Tso |
|---|---|
| 論文名稱: |
在無線感測網路中以接收訊號強度為基準之混合式室內定位法 A Hybrid RSSI-based Indoor Localization Scheme in Wireless Sensor Networks |
| 指導教授: |
張燕光
Chang, Yeim-Kuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 室內定位 、ZigBee 模組 、無線感測網路 、數位居家照護 |
| 外文關鍵詞: | CC2431, wireless sensor networks, ZigBee modules, indoor localization |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來家庭自動化程式推陳出新,若是要提供好的自動化服務則需要精確找出使用者位置的能力,室內定位也是最近熱門的研究主題對於在室內環境中自動地提供數位居家照護服務給使用者。然而室內定位由於在室內無法使用常見的全球位置測定系統 (Global Positioning System, GPS),最近幾年無線感測網路 (Wireless Sensor Networks)的蓬勃發展,加上無線感測網路的性質正好適合實作室內定位,延伸出根據無線感測網路的物理特性進而實作室內定位的眾多相關討論議題。在本論文中,我們討論接收訊號強度 (Received Signal Strength Indication,RSSI),並且提出能讓使用者處於室內環境接近某個參考節點時能正確判斷的CTA(Closer Tracking Algorithm)混和風格方法,在我們所提出的CTA 方法藉由事先定義的門檻值設計成切換ACA (Approximately Closer Approach)與RTT (Real-time Tracking)兩種模式,藉由切換兩種模式來達到適應更多定位情形的發生,此外也提出移動參考節點來減少沒有達到我們事先定義的門檻值內的情形以增加定位的準確性。我們實驗採用IEEE 802.15.4 協定的CC2431 晶片ZigBee 模組實作我們的方法以及比較其它方法(如Fingerprinting、Real-Time Tracking 方法),從實驗結果我們可以驗證我們提出的CTA 方法在不同情況下挑選了適合的模式並且達到了增加定位的準確性以及證實定位結果有非常高的可信度,此外我們透過改善參考節點的擺設以及移動參考節點搭配上我們所提出的方法讓我們的定位準確度更加準確。實驗結果表示我們的方法準確率可以達到誤差值在一公尺以內,以及在距離參考節點一公尺範圍內達到90%的精確性。
For the various applications in home automation, the service system requires to precisely estimate user’s locations by certain sensors. It is considered as a challenge to automatically serve a mobile user in an indoor environment. However, indoor localization cannot be carried out effectively by the well-know Global Positioning System (GPS). In recent years, Wireless Sensor Networks (WSNs) are thus popularly used to locate a mobile object in an indoor environment. Some physical features are widely discussed to solve indoor localization in WSNs. In this paper, we inquired about the RSSI-based solutions for indoor localization, and proposed a new hybrid-styled Closer Tracking Algorithm (CTA) to locate a mobile user in an indoor environment. Under the proposed CTA, a mode-changed operation was designed to automatically switch the Approximately Closer Approach (ACA) and the Real-time Tracking (RTT) methods according to the pre-defined thresholds, which we had tuned. At the same time, we designed the movable reference nodes to reduce the uncovered ranges of the RTT part for increasing the accuracy. The proposed CTA was evaluated by using ZigBee CC2431 modules. In the experimental results, the CTA can properly select an adaptive mode to improve the localization accuracy with high confidence. Furthermore, the accuracy can be improved by the deployment and movement of the reference nodes. The results showed that the proposed CTA can accurately determine the position with error distance less than 1 meter. At the same time, the CTA has at least 90% precision when the distance is less than one meter.
[1] K. Aamodt., “CC2431 Location Engine. Application Note,” AN042, Texas Instruments.
[2] P. Bahl and V. Padmanabhan, “RADAR: An In-Building RF-based User Location and Tracking System,” In Proceedings of the IEEE INFOCOM 2000, March 2000, pp. 775-784.
[3] Paolo Barsocchi, Stefano Lenzi, Stefano Chessa, and Gaetano Giunta, “A Novel Approach to Indoor RSSI Localization by Automatic Calibration of the Wireless Propagation Model,“ IEEE Vehicular Technology Conference (VTC), April 26-29, 2009.
[4] Paolo Barsocchi, Stefano Lenzi, Stefano Chessa, and Gaetano Giunta, “Virtual Calibration for RSSI-based Indoor Localization with IEEE 802.15.4,” Proceedings of International IEEE International Conference on Communications, ICC 2009, Dresden (Germany), 2009.
[5] R. Battiti, M. Brunato, and A. Villani, “Statistical learning theory for location fingerprinting in wireless LAN’s,” Technical Report, Oct. 2002.
[6] Yeim-Kuan Chang, Chi-Lu Yang, Yu-Tso Chen, Chih-Ping Chu, ”A RSSI-based Algorithm for Indoor Localization Using ZigBee in Wireless Sensor Network,” accepted in the IEEE International Conference on Distributed Multimedia Systems (DMS2009) 2009.
[7] C. Gentile and L. Klein-Berndt, “Robust Location Using System Dynamics and Motion Constraints”, in Proc. IEEE International Conference on Communications, vol. 3, pp. 1360-1364, Jun. 2004.
[8] Youngjune Gwon, Ravi Jain, and Toshiro Kawahara, “Robust Indoor Location Estimation of Stationary and Mobile Users,” in Proc. of IEEE INFOCOM, March 2004.
[9] IEEE 802.15 WPAN Task Group 4, IEEE 802.15.4-2006, http://www.ieee802.org/15/pub/TG4.html
[10] Allen Ka, and Lun Miu, “Design and Implementation of an Indoor Mobile Navigation System,” Master thesis of CS at MIT 2002.
[11] Kamol Kaemarungsi, “Design of Indoor positioning system based on location fingerprint technique,” University of Pittsburgh, 2005.
[12] A. M. Ladd, K. E. Bekris, G. Marceau, A. Rudys, L. E. Kavraki, and D. S. Wallach, ”Roboticsbased location sensing using wireless ethernet,” in Proc. ACM International Conference on Mobile Computing and Networking (MOBICOM’02), 2002, pp. 227238.
[13] Erin-Ee-Lin Lau, Boon-Giin Lee, Seung-Chul Lee, and Wan-Young Chung, “Enhanced RSSI-Based High Accuracy Real-Time User Location Tracking System for Indoor and Outdoor Environments,” International Journal on Smart Sensing and Intelligent Systems, Vol. 1, No. 2, June 2008.
[14] Jing-Chi Lin and Jyh-Ching Juang, “Analysis of the Quality of Service in Indoor Positioning Systems,” M.Sc. Thesis report, National Cheng Kung University, 2006.
[15] Angela Song-Ie Noh, Woong Jae Lee, and Jin Young Ye, “Comparison of the mechanisms of the ZigBee’s indoor localization algorithm,” in Proc. SNPD, pp.13-18, 2008.
[16] P. Prasithsangaree, P. Krishnamurthy, and P. K. Chrysanthis, “On indoor position location with wireless LANs,“ in Proc. IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’02), Lisbon, Portugal, Sept. 2002.
[17] T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, “A probabilistic approach to WLAN user location estimation,” International Journal of Wireless Information Networks, vol. 9, no. 3, pp. 155164, July 2002.
[18] S. Saha, K. Chaudhuri, D. Sanghi, and P. Bhagwat, “Location determination of a mobile device using IEEE 802.11b access point signals,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC’03), New Orleans, LA, Mar. 2003, pp. 19871992.
[19] Masashi Sugano, Tomonori Kawazoe, Yoshikazu Ohta, and Masayuki Murata, “Indoor Localization System Using RSSI Measurement of Wireless Sensor Network Based on ZigBee Standard,” in Proc. of Wireless Sensor Networks 2006 (WSN 2006), July 2006.
[20] System–on–chip for 2.4 GHz ZigBee /IEEE 802.15.4 with location engine., Datasheet, Texas Instruments, http://focus.ti.com/lit/ds/symlink/cc2431.pdf, July 2007.
[21] Shashank Tadakamadla, "Indoor local positioning system for zigbee based on RSSI," M.Sc. Thesis report, Mid Sweden University, 2006.
[22] Stefano Tennina, Marco Di Renzo, Fabio Graziosi and Fortunato Santucci, “Locating ZigBee Nodes Using the TI’s CC2431 Location Engine: A Testbed Platform and New Solutions for Positioning Estimation of WSNs in Dynamic Indoor Environments,” in Proc. of the First ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments (MELT 2008), Sep. 2008.
[23] Z. Xiang, S. Song, J. Chen, H. Wang, J. Huang, and X. Gao, “A wireless LANbased indoor positioning technology, “ IBM Journal of Research and Development, vol. 48, no. 5/6, pp. 617626, Sept./Nov. 2004.
[24] Qingming Yao, Fei-Yue Wang, Hui Gao, Kunfeng Wang, and Hongxia Zhao, “Location Estimation in ZigBee Network Based on Fingerprinting,” in Proc. IEEE International Conference on Vehicular Electronics and Safety, Dec 2007.
[25] M. A. Youssef, A. Agrawala, and A. U. Shankar, “WLAN location determination via clustering and probability distributions, “ in Proc. IEEE International Conference on Pervasive Computing and Communications (PerCom’03), DallasFort Worth, TX, Mar. 2326, 2003, pp. 2326.
[26] ZigBee Alliance, ZigBee Specification Version r13, San Ramon, CA, USA, Dec. 2006.