| 研究生: |
薛春木 Hsueh, Chun-Mu |
|---|---|
| 論文名稱: |
HfO2-x薄膜之結構與光學性質暨其應用於高溫HfO2-x/W/HfO2-x/W多層太陽能選擇性吸收膜之研究 HfO2-x film and its application in HfO2-x/W/HfO2-x/W multilayer solar selective absorber at high temperature |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 太陽能選擇性吸收膜 、氧化鉿 、多層膜 、X光薄膜繞射儀 、X光光墊子能譜儀 、橢圓偏振光儀 、UV/vis/NIR分光光譜儀 、傅立葉轉換紅外線光譜儀 |
| 外文關鍵詞: | solar selective absorbers, hafnium oxide, multilayers, thin-film X-ray diffraction, X-ray photoelectron spectroscope, ellipsometry, UV/vis/NIR spectrometry, Fourier transform infrared spectrometer |
| 相關次數: | 點閱:226 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為使用反應式磁控頻射濺鍍方法,設計開發一新型交互堆疊之HfO2-x/W/HfO2-x/W多層太陽能選擇性吸收膜,並鍍製於不鏽鋼基板上,以期能運用於極高溫(600~1000°C)的情況下。在鍍製多層膜之前,我們首先分別使用兩種靶材:Hf金屬靶與HfO2陶瓷靶,在不同的O2/Ar氣體通量比(r)鍍製單層HfO2-x薄膜於Si基板上,接著進行不同溫度的後熱處理,以探討與比較其微結構與光學性質;接著設計與製備多層選擇性吸收膜,並進行不同溫度條件的熱處理,探討其性能及結構變化。
本論文實驗結果與討論分為三大部分,第一及第二部份是分別探討Hf金屬靶材和HfO2-x陶瓷靶材在相同濺鍍條件下所鍍製的HfO2-x薄膜,進行不同溫度的熱處理後,其各種材料分析的結果與比較。我們以X光薄膜繞射儀(Thin-film XRD)對HfO2-薄膜進行微結構分析,發現所有剛鍍製好的薄膜皆為多晶態結構,而HfO2靶鍍製的膜在無熱處理和相對低溫下退火(600°C和800°C)時,隨著r值增加,其結晶度變好;而Hf靶鍍製的膜之結晶度則普遍較HfO2靶的好。使用場發射掃描式顯微鏡(FE-SEM)則發現薄膜是由許多顆粒所組成的連續膜,而每個顆粒包含數顆小晶粒。兩種靶材鍍製的HfO2-x薄膜退火前的顆粒間距較大,退火後則變小。X光光電子能譜儀(XPS)則被用來分析薄膜表面及縱深成份分析,發現HfO2-x靶材鍍製之HfO2-x薄膜表面的化學計量比會隨著O2/Ar通量比增加而改善,但是通入過量氧氣反而會降低O/Hf比例;縱深成份分析方面,無熱處理和退火後的薄膜都存在著HfSixOy介面層,這個結果對光學常數(折射率和消光係數)的量測有重大影響。光學常數則透過橢圓分光儀(Ellipsometer)取得,在建立擬合模型時需考慮HfSixOy介面層的存在,而非單純的Si基板和SiO2原生氧化層。結果發現,HfO2-x薄膜折射率隨著O2/Ar比增加而達到一飽和值,過量氧氣通入則使折射率下降。
第三部分則是分別使用紫外光/可見光/近紅外光分光光譜儀(UV/vis/NIR Spectrometer)和傅立葉轉換紅外光譜儀(FT-IR)量測逐層堆疊的多層膜、不同底層W膜厚度的多層膜、和設計後之多層膜於不同溫度退火前後的反射率和放射率光譜,並計算其太陽能吸收率及放射率,以及其結構上的變化。結果發現,逐層堆疊之多層膜所得到的吸收率符合其各層所扮演的角色:HfO2-x層具有增透及抗反射效用、金屬W層則在可見光區有高吸收,紅外光區有高反射的特性;不同底層W膜厚度的多層膜之放射率則隨W層厚度增加而增加,經過600°C退火後也皆增加;設計後的多層吸收膜於不同溫度退火後的吸收率皆較退火前來的高,放射率則隨退火溫度增加而增加。
The goal of this research is to develop a new design of solar selective absorber—alternately stacked HfO2-x/W/HfO2-x/W multilayer coatings on stainless steel substrates for ultrahigh temperature (600~1000°C) applications using a reactive radio frequency (RF) magnetron sputtering deposition system. Before fabricating the multilayer coatings, the microstructure and optical properties of before and after different temperatures annealing individual HfO2-x coatings on Si substrates which were deposited by Hf and HfO2 targets at varied O2/Ar gas flow ratios (r), respectively, were studied. X-ray diffraction (XRD) analysis show that the obtained HfO2-x coatings were polycrystalline. Field emission scanning electron microscopy surface morphology images indicate that the coatings consist of grains having sizes and porosity depending on the ratio. The optical constants (refractive indices and extinction coefficients) of these coatings were obtained using ellipsometry. X-ray photoelectron spectroscope was used to investigate the surface chemistry. Based on these results, selected HfO2-x coatings were used for the fabrication of multilayer absorbers. The ad-deposited multilayer and 600, 800, and 900°C annealed in vacuum with Ar atmosphere coatings were examined using UV/vis/NIR spectrometry and Fourier transform infrared spectrometer. The crystalline structure was also examined using XRD. The solar absorptance of the multilayer absorbers coatings was improved after the annealing but the emittance slightly increased due to occurrence of oxide formation. The relation between material characteristics and the optical properties are presented and discussed.
[1] Lehan, J.P., et al., OPTICAL AND MICROSTRUCTURAL PROPERTIES OF HAFNIUM DIOXIDE THIN-FILMS. Thin Solid Films, 1991. 203(2): p. 227-250.
[2] Edlou, S.M., A. Smajkiewicz, and G.A. Aljumaily, OPTICAL-PROPERTIES AND ENVIRONMENTAL STABILITY OF OXIDE COATINGS DEPOSITED BY REACTIVE SPUTTERING. Applied Optics, 1993. 32(28): p. 5601-5605.
[3] Lesser, M., ANTIREFLECTION COATINGS FOR SILICON CHARGE-COUPLED-DEVICES. Optical Engineering, 1987. 26(9): p. 911-915.
[4] Ramzan, M., et al., Optical description of HfO2/Al/HfO2 multilayer thin film devices. Current Applied Physics, 2014. 14(12): p. 1854-1860.
[5] Nomura, K., et al., Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003. 300(5623): p. 1269-1272.
[6] Liu, W.T., et al., Influence of O-2/Ar flow ratio on the structure and optical properties of sputtered hafnium dioxide thin films. Surface & Coatings Technology, 2010. 205(7): p. 2120-2125.
[7] Jena, S., et al., Effect of O-2/Ar gas flow ratio on the optical properties and mechanical stress of sputtered HfO2 thin films. Thin Solid Films, 2015. 592: p. 135-142.
[8] Ramana, C.V., et al., Effect of oxygen/argon gas ratio on the structure and optical properties of sputter-deposited nanocrystalline HfO2 thin films. Ceramics International, 2015. 41(5): p. 6187-6193.
[9] Kennedy, C.E., Review of mid-to high-temperature solar selective absorber materials. Vol. 1617. 2002: National Renewable Energy Laboratory Golden, Colo, USA.
[10] Zhang, Q.C. and Y.G. Shen, High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering. Solar Energy Materials and Solar Cells, 2004. 81(1): p. 25-37.
[11] Antonaia, A., et al., Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature. Solar Energy Materials and Solar Cells, 2010. 94(10): p. 1604-1611.
[12] Wackelgard, E., et al., Development of W-SiO2 and Nb-TiO2 solar absorber coatings for combined heat and power systems at intermediate operation temperatures. Solar Energy Materials and Solar Cells, 2015. 133: p. 180-193.
[13] 張志純, 太陽能之理論及應用, 徐氏基金會, 台北市. 1982.
[14] Wikipedia contributors. Thin-film interference. 4 February 2017 06:43 UTC 7 February 2017 03:48 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Thin-film_interference&oldid=763623029.
[15] Granqvist, C.G., Spectrally selective surfaces for heating and cooling applications. Vol. 1. 1989: SPIE Press.
[16] Zukic, M., et al., VACUUM ULTRAVIOLET THIN-FILMS .1. OPTICAL-CONSTANTS OF BAF2, CAF2, LAF3, MGF2, AL2O3, HFO2, AND SIO2 THIN-FILMS. Applied Optics, 1990. 29(28): p. 4284-4292.
[17] Al-Kuhaili, M.F., Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Optical Materials, 2004. 27(3): p. 383-387.
[18] Sibin, K.P., S. John, and H.C. Barshilia, Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications. Solar Energy Materials and Solar Cells, 2015. 133: p. 1-7.
[19] Penza, M., et al., Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor. Sensors and Actuators B-Chemical, 1998. 50(1): p. 9-18.
[20] Datta, N., et al., Vacuum deposited WO3 thin films based sub-ppm H2S sensor. Materials Chemistry and Physics, 2012. 134(2-3): p. 851-857.
[21] Bamwenda, G.R. and H. Arakawa, The visible light induced photocatalytic activity of tungsten trioxide powders. Applied Catalysis a-General, 2001. 210(1-2): p. 181-191.
[22] Sauvet, K., A. Rougier, and L. Sauques, Electrochromic WO3 thin films active in the IR region. Solar Energy Materials and Solar Cells, 2008. 92(2): p. 209-215.
[23] He, Z.B., et al., The effects of O-2/Ar ratio on the structure and properties of hafnium dioxide (HfO2) films. Vacuum, 2006. 81(3): p. 211-214.
[24] Pereira, L., et al., Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2005. 118(1-3): p. 210-213.
[25] Gao, J., et al., Microstructure, wettability, optical and electrical properties of HfO2 thin films: Effect of oxygen partial pressure. Journal of Alloys and Compounds, 2016. 662: p. 339-347.
[26] Tilley, R.J.D., Colours Due to Refraction and Dispersion, in Colour and the Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour, 2nd Edition. 2010, John Wiley & Sons, Ltd. p. 49-90.
[27] 藍詠翔, 瓷金結構 aC: H/Pt 用於選擇性太陽吸收膜之研究. 成功大學材料科學及工程學系學位論文, 2009: p. 1-104.
[28] 林麗娟, X光繞射原理及其應用, in 工業材料86期. 1994. p. 100-109.
[29] 田大昌 and 黃啟貞, 場發射式歐傑電子顯微鏡(AES)/微區表面化學電子能譜儀(ESCA). 工業材料雜誌, 2003. 201: p. 81-89.
[30] 張立信, 表面化學分析技術. 奈米通訊, 2012. 19(4).
[31] contributors, W. Ellipsometry. 11 October 2016 02:54 UTC 7 February 2017 12:48 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Ellipsometry&oldid=743757337.
[32] 鄭景翔, GZO/Pt/GZO 透明導電多層膜之性質研究及光學模擬. 成功大學材料科學及工程學系學位論文, 2006: p. 1-96.
[33] 林智仁 and 羅聖全, 場發射穿透式電子顯微鏡簡介. 工業材料雜誌, 2003. 201: p. 90-98.
[34] Vargas, M., N.R. Murphy, and C.V. Ramana, Structure and optical properties of nanocrystalline hafnium oxide thin films. Optical Materials, 2014. 37: p. 621-628.
[35] Liu, W.T., et al., Influence of RF power on the structure and optical properties of sputtered hafnium dioxide thin films. Physica B-Condensed Matter, 2010. 405(4): p. 1108-1112.
[36] Nyholm, R., A. Berndtsson, and N. Martensson, CORE LEVEL BINDING-ENERGIES FOR THE ELEMENTS HF TO BI (Z = 72-83). Journal of Physics C-Solid State Physics, 1980. 13(36): p. 1091-1096.
[37] Barreca, D., et al., Hafnium oxide thin film grown by ALD: An XPS study. Surface Science Spectra, 2007. 14(1): p. 34-40.
[38] Bagus, P.S., et al., Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. Journal of Electron Spectroscopy and Related Phenomena, 1999. 100: p. 215-236.
[39] Ohshita, Y., et al., HfO2 growth by low-pressure chemical vapor deposition using the Hf(N(C2H5)(2))(4)/O-2 gas system. Journal of Crystal Growth, 2001. 233(1-2): p. 292-297.
[40] Aygun, G. and I. Yildiz, Interfacial and structural properties of sputtered HfO2 layers. Journal of Applied Physics, 2009. 106(1): p. 7.
[41] Jiang, R., E.Q. Xie, and Z.F. Wang, Interfacial chemical structure of HfO2/Si film fabricated by sputtering. Applied Physics Letters, 2006. 89(14): p. 3.
[42] Kirsch, P.D., et al., Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si(100). Journal of Applied Physics, 2002. 91(7): p. 4353-4363.
[43] Bruggeman, D.A.G., Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen Der Physik, 1935. 24(7): p. 636-664.
[44] William D. Callister, J., Materials Science and Engineering and Introduction. 4th ed. 2000, 台北市: 高立圖書有限公司. 861-862.
[45] 史月艳 and 那鸿悦, 《太阳光谱选择性吸收膜系设计、制备及测评》. 2009-03-01: 清华大学
[46] Wikipedia contributors. Emissivity. 11 June 2016 12:05 UTC 26 June 2016 01:52 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Emissivity&oldid=724777116.