簡易檢索 / 詳目顯示

研究生: 張博凱
Jang, Bo-Kai
論文名稱: 應用統計製程管制與資料科學於工具機產業良率提升之實證研究
An Empirical Study of Statistical Process Control and Data Science for Yield Enhancement in Machine Tool Industry
指導教授: 李家岩
Lee, Chia-Yen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 104
中文關鍵詞: 統計製程管制工具機多變量管制圖資料探勘支持向量法
外文關鍵詞: Statistical Process Control, Machine Tool, Multivariate Control Chart, Data Mining, Support Vector Method
相關次數: 點閱:141下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工具機產業中,生產方式屬於大規模生產,因此在製造過程中保持高品質的產品至關重要,製造過程中的變異會對產品品質有重大的影響。一般而言,會需要即時監控設備加工產品的狀態,因此本研究為開發出線上即時監控的品管系統,達到降低變異與提生產量等目標。

    本研究透過資料科學的架構結合統計製程管制開發了多個管制圖,並考量其功能與限制互相配合。首先,產品樣本透過分群分析將資料分為許多組,並將每一群當為產品的基準,其次,根據相似的樣本建構單變量管制圖。過程中製程資料的中心線會隨時間不斷改變,因此我們使用基於輪廓監督與時間序列的方式建構管制圖。最後我們以多變量管制圖Hotelling’s T2管制圖與基於核距離(Kernel distance)的管制圖進行比較。

    為了驗證我們提出的研究架構,我們對工具機案例公司進行實證研究。結果表明,透過資料探勘與機器學習技術進而使用統計製程管制建構管制圖的這一套流程,依此流程建構的品管系統顯著提高了管制圖監控的功能與可靠性,進而可以提升產量。

    In machine tool industry, it’s critical to maintain high-quality products during the manufacturing process while the variance in the process shows significantly impact on quality issue, especially in mass production. Typically, it’s necessary to monitor the real-time status of equipment control; that is, it’s urgent to develop a production system which has real-time monitoring for driving productivity and reducing variance.

    This study developed several statistical control charts via data mining framework. First, data was divided into many groups by cluster analysis, and the baseline of product can be defined for each cluster. Second, univariate control charts were developed based on the baselines of qualified products. In particular, the control charts were based on time series and profile monitoring since the monitored target will constantly change over time. Finally, we also extended to develop the multivariate control chart with Hotelling’s T2 control chart and kernel distance control chart for the comparison.

    An empirical study of machine tool manufacturer was conducted to validate the proposed framework. The result shows that the quality system embedded with data mining and machine learning technology significantly enhanced the monitoring reliability of control charts and improved the yield.

    摘要 I 目錄 VIII 表目錄 X 圖目錄 XI 第一章緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 4 1.4 研究架構 4 第二章文獻回顧 5 2.1 工具機 5 2.2 統計製程管制 7 2.3 資料科學方法論 14 2.4 統計製程管制應用比較 19 2.5 小結 21 第三章研究方法 22 3.1 動態時間校正 22 3.2 管制圖建構 27 3.3 支持向量描述與K管制圖 35 3.4 小結 48 第四章實證研究-統計製程管制 50 4.1 研究架構與流程 50 4.2 資料蒐集與分析變數 51 4.3 資料預處理與樣型建構 52 4.4 尋找相似樣本 56 4.5 管制圖建構 61 4.6 小結 77 第五章實證研究-支持向量描述 78 5.1 研究架構與流程 78 5.2 最佳化模型建構 79 5.3 模擬生成資料 81 5.4 尋找最佳參數與支持向量 83 5.5管制圖建構 92 5.6小結 97 第六章結論建議與未來研究 98 6.1 結論 98 6.2 未來研究與建議 101 參考文獻 102

    Alt, F. (1985). Multivariate Quality Control. Encyclopedia of Statistical Sciences 6 (S. Kotz and N. Johnson, eds.), 110-122. In: Wiley & Sons, New York.
    Berndt, D. J., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. Paper presented at the KDD workshop.
    Box, G. E., & Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American statistical association, 65(332), 1509-1526.
    Boyd, D. (1950). ‘Applying the Group Control Chart for x and R. Industrial Quality Control, 3, 22-25.
    Cambron, P., Masson, C., Tahan, A., & Pelletier, F. (2018). Control chart monitoring of wind turbine generators using the statistical inertia of a wind farm average. Renewable Energy, 116, 88-98.
    Chaturvedi, S. (2015). Introduction to machine and machine tools.
    Colosimo, B. M., Moroni, G., & Grasso, M. (2010). Real-time tool condition monitoring in milling by means of control charts for auto-correlated data. Journal of Machine Engineering, 10.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303.
    Dong, Z.-H., & Lee, C.-Y. (2017). Equipment Health Monitoring in the Semiconductor Assembly Process.
    Dornfeld, D. A., & DeVries, M. (1990). Neural network sensor fusion for tool condition monitoring. CIRP Annals-Manufacturing Technology, 39(1), 101-105.
    Duncan, A. (1986). Quality Control and Industrial Statistics, 5th edn (Homewood, IL, Richard D. Irwin). GALLUS, G., MANDELLI, C., MARCHI, M. & RADAELLI, G.(1986) On surveillance methods for congenital.
    Grasso, M., Albertelli, P., & Colosimo, B. (2013). An adaptive SPC approach for multi-sensor fusion and monitoring of time-varying processes. Procedia CIRP, 12, 61-66.
    Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques: Elsevier.
    Harris, K., Triantafyllopoulos, K., Stillman, E., & McLeay, T. (2016). A multivariate control chart for autocorrelated tool wear processes. Quality and Reliability Engineering International, 32(6), 2093-2106.
    Hopp, W. J., & Spearman, M. L. (2011). Factory physics: Waveland Press.
    Hotelling, H. (1947). Multivariate quality control. Techniques of statistical analysis.
    Humphrey, S., Papadopoulos, H., Linke, B., Maiyya, S., Vijayaraghavan, A., & Schmitt, R. (2014). Power measurement for sustainable high-performance manufacturing processes. Procedia CIRP, 14, 466-471.
    Jeong, Y.-S., Jeong, M. K., & Omitaomu, O. A. (2011). Weighted dynamic time warping for time series classification. Pattern Recognition, 44(9), 2231-2240.
    Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of quality technology, 32(4), 418.
    Kim, A., Oh, K., Jung, J.-Y., & Kim, B. (2017). Imbalanced classification of manufacturing quality conditions using cost-sensitive decision tree ensembles. International Journal of Computer Integrated Manufacturing, 1-17.
    Kurada, S., & Bradley, C. (1997). A review of machine vision sensors for tool condition monitoring. Computers in industry, 34(1), 55-72.
    Li, J., Tao, F., Cheng, Y., & Zhao, L. (2015). Big data in product lifecycle management. The International Journal of Advanced Manufacturing Technology, 81(1-4), 667-684.
    Liao, Y. (1986). Development of a monitoring technique for tool change purpose in turning operations. Paper presented at the Proceedings of the Twenty-Sixth International Machine Tool Design and Research Conference.
    Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53.
    Manuele, J. (1945). Control chart for determining tool wear. Industrial Quality Control, 1(6), 7-10.
    Montgomery, D. C. (2009). Introduction to statistical quality control: John Wiley & Sons (New York).
    Montgomery, D. C., & Mastrangelo, C. M. (1991). Some statistical process control methods for autocorrelated data. Journal of quality technology, 23(3), 179-193.
    Motorcu, A. R., & Güllü, A. (2006). Statistical process control in machining, a case study for machine tool capability and process capability. Materials & Design, 27(5), 364-372.
    Niennattrakul, V., & Ratanamahatana, C. A. (2007). On clustering multimedia time series data using k-means and dynamic time warping. Paper presented at the Multimedia and Ubiquitous Engineering, 2007. MUE'07. International Conference on.
    Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100-115.
    Quesenberry, C. P. (1991). SPC Q charts for start-up processes and short or long runs. Journal of quality technology, 23(3), 213-224.
    Roberts, S. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239-250.
    Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.
    Sakla, W. A., Sakla, A. A., & Chan, A. (2009). A support vector data description approach to target detection in hyperspectral imagery. Paper presented at the Automatic Target Recognition XIX.
    Serra, J., & Arcos, J. L. (2014). An empirical evaluation of similarity measures for time series classification. Knowledge-Based Systems, 67, 305-314.
    Shewhart, W. A. (1931). Economic control of quality of manufactured product: ASQ Quality Press.
    Shi, D., & Gindy, N. N. (2007). Development of an online machining process monitoring system: Application in hard turning. Sensors and Actuators A: Physical, 135(2), 405-414.
    Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for tool condition monitoring in a turning process. The International Journal of Advanced Manufacturing Technology, 65(1-4), 371-393.
    Sun, R., & Tsung, F. (2003). A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research, 41(13), 2975-2989.
    Tao, F., Qi, Q., Liu, A., Kusiak, A., Wang, J., Ma, Y., . . . Zhang, G. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems.
    Tax, D. M., & Duin, R. P. (2001). Uniform object generation for optimizing one-class classifiers. Journal of machine learning research, 2(Dec), 155-173.
    Tax, D. M., & Duin, R. P. (2004). Support vector data description. Machine learning, 54(1), 45-66.
    Zhu, J., & Lin, D. K. (2009). Monitoring the slopes of linear profiles. Quality Engineering, 22(1), 1-12.
    鄭春生. (2010). 品質管理: 現代化觀念與實務應用: 全華圖書.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE