| 研究生: |
程伯揚 Cheng, Po-Yang |
|---|---|
| 論文名稱: |
聚苯咪唑薄膜與磺酸化咪唑/聚苯咪唑薄膜於高溫型質子交換膜燃料電池性能研究 Performance Study of Polybenzimidazole Membranes and 1H-imidazole-4-sulfonic acid /Polybenzimidazole Hybrid Membranes for High Temperature Proton Exchange Membrane Fuel Cells |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 聚苯咪唑 、高溫型質子交換膜燃料電池 、質子導電度 、耐久度測試 、磷酸流失 |
| 外文關鍵詞: | polybenzimidazole, high-temperature PEMFC, proton conductivity, durability, acid loss |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用3,3’-diaminobenzidine和2,2-bis (4-carboxyphenyl)-hexaflouopropane兩種單體合成出含氟基團,不同於商用並可溶於有機溶劑的聚苯咪唑(Polybenzimidazole,PBI)與磺酸化有機分子1H-imidazole-4-sulfonic acid (ImSA)。在成膜過程中添加ImSA分子與PBI混摻,製備了一系列的pristine PBI薄膜與ImSA-PBI複合薄膜。期望添加ImSA分子能提升薄膜的質子導電度。一系列薄膜性質測試探討pristine PBI薄膜與ImSA-PBI複合薄膜是否適用於高溫型質子交換膜燃料電池。ImSA的添加使薄膜熱性質、抗化性與機械強度略有下降,卻提升了磷酸摻雜量與質子導電度,在170 oC時有質子導電度達0.28 S/cm。
將pristine PBI薄膜與ImSA-PBI複合薄膜製作成膜電極進行單電池效能與長時間測試,在負載0.2 A/cm2電流時Pristine PBI薄膜的最大功率密度可達540 mW/cm2,ImSA-PBI複合薄膜最大功率密度可達610 mW/cm2。經過開關測試 (160 oC下12小時負載電流後再停止操作並降回室溫12小時) 與30天穩態測試 (150 oC下負載電流操作720小時)後兩種薄膜的單電池都無衰退現象,但ImSA-PBI複合薄膜較容易流失磷酸。
In this work, sulfonated organic compound, 1H-imidazole-4-sulfonic acid (ImSA), and fluorine-containing polybenzimidazole (6F-PBI) were synthesized. A series of pristine PBI membranes and ImSA-PBI hybrid membranes were prepared. We expected that adding ImSA molecules into PBI membranes could improve the proton conductivity. The pristine PBI membranes and ImSA-PBI hybrid membranes properties for HT-PEMFC have been study. Adding ImSA molecules slightly reduced the properties of membrane but improved the acid doping level and proton conductivity. The proton conductivity of ImSA-PBI hybrid membrane could reach 0.28 S/cm at 170 oC. We fabricated membrane electrode assemblies (MEA) with pristine PBI membranes and ImSA-PBI hybrid membranes. In the single cell test, the max power density at current density of 1.2 A/cm2 were 540 and 610 mW/cm2 for pristine PBI membrane and ImSA-PBI hybrid membrane, respectively. We conducted a startup-shutdown test (operated at 160 oC with 0.2 A/cm2 for 12 h and then 12 h off at room temperature) and a 30 days steady-state test (150 oC with 0.2 A/cm2 ). There was no degradation for both pristine PBI membrane and ImSA-PBI hybrid membrane, but we found that ImSA-PBI hybrid membrane had more phosphoric acid loss during operation.
[1] W.R. Grove, On Voltaic Series and the Combination of Gases by Platinum Philosophical Magazine and Journal of Science, XIV 127-130 (1839).
[2] Wikipedia, Fuel cells.
[3] U.S. DOE, FUEL CELL TECHNOLOGIES OFFICE.
[4] E.G.S.P. Inc., Fuel Cell Handbook (Fifth Edition), Science Applications International Corporation, (2000).
[5] N. Guerrero Moreno, M. Cisneros Molina, D. Gervasio, J.F. Pérez Robles, Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost, Renewable and Sustainable Energy Reviews, 52 897-906 (2015).
[6] FuelCellToday, (2014).
[7] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chemistry of Materials, 15 4896-4915 (2003).
[8] Y. Shao, G. Yin, Z. Wang, Y. Gao, Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges, Journal of Power Sources, 167 235-242 (2007).
[9] S. Subianto, Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells, Polymer International, 63 1134-1144 (2014).
[10] M.A. Haque, A.B. Sulong, K.S. Loh, E.H. Majlan, T. Husaini, R.E. Rosli, Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review, International Journal of Hydrogen Energy, (2016).
[11] A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B.G. Pollet, A. Ingrama, W. Bujalski, High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review, Journal of Power Sources, 231 264-278 (2013).
[12] Q. Li, R. He, J.-A. Gao, J.O. Jensen, N.J. Bjerrum, The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C, Journal of The Electrochemical Society, 150(12) A1599-A1605 (2003).
[13] J.S. Wainright, J.-T. Wang, D. Weng, R.F. Savinell, M. Litt, Acid‐Doped Polybenzimidazoles A New Polymer Electrolyte, Journal of The Electrochemical Society, 142 (1995).
[14] Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, 151 A8 (2004).
[15] K.D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, J. Maier, Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochimica Acta, 43 1281-1288 (1998).
[16] M. Schuster, W.H. Meyer, G. Wegnera, H.G. Herz, M. Iseb, M. Schuster, K.D. Kreuer, J. Maier, Proton mobility in oligomer-bound proton solvents- imidazole immobilization via flexible spacers, Solid State Ionics, 145 85-92 (2001).
[17] A. Schechtera, R.F. Savinell, Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells, Solid State Ionics, 147 181-187 (2002).
[18] S. Li, Z. Zhou, M. Liu, W. Li, J. Ukai, K. Hase, M. Nakanishi, Synthesis and properties of imidazole-grafted hybrid inorganic–organic polymer membranes, Electrochimica Acta, 51 1351-1358 (2006).
[19] S.W. Chuang, S.L.C. Hsu, M.L. Yang, Preparation and characterization of fluorine-containing polybenzimidazole/imidazole hybrid membranes for proton exchange membrane fuel cells, European Polymer Journal, 44 2202-2206 (2008).
[20] C.H. Shen, S.L.C. Hsu, E. Bulycheva, N. Belomoina, Polybenzimidazole/1H-imidazole-4-sulfonic acid hybrid membranes for high-temperature proton exchange membranes fuel cells, Journal of Membrane Science, 399-400 11-15 (2012).
[21] R. O'Hayre, 車碩源, W. Colella, F.B. Prinz, 燃料電池基礎 Fuel cell fundamental, 全華圖書 (2008).
[22] H. Vogel, C.S. Marvel, Polybenzimidazoles, new thermally stable polymers, Journal of Polymer Science 50 511-539 (1961).
[23] L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, B.C. Benicewicz, High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol−Gel Process, Chemistry of Materials, 17 5328-5333 (2005).
[24] J. Asensio, Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting, Journal of Membrane Science, 241 89-93 (2004).
[25] C. Wannek, B. Kohnen, H.F. Oetjen, H. Lippert, J. Mergel, Durability of ABPBI-based MEAs for High Temperature PEMFCs at Different Operating Conditions, Fuel Cells, 8 87-95 (2008).
[26] Y. Oono, A. Sounai, M. Hori, Prolongation of lifetime of high temperature proton exchange membrane fuel cells, Journal of Power Sources, 241 87-93 (2013).
[27] S.W. Chuang, S.L.C. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications, Journal of Polymer Science Part A: Polymer Chemistry, 44 4508-4513 (2006).
[28] H. Pu, L. Wang, H. Pan, D. Wan, Synthesis and characterization of fluorine-containing polybenzimidazole for proton conducting membranes in fuel cells, Journal of Polymer Science Part A: Polymer Chemistry, 48 2115-2122 (2010).
[29] Q.F. Li, H.C. Rudbeck, A. Chromik, J.O. Jensen, C. Pan, T. Steenberg, M. Calverley, N.J. Bjerrum, J. Kerres, Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes, Journal of Membrane Science, 347 260-270 (2010).
[30] Q. Li, J.O. Jensen, Membranes for High Temperature PEMFC Basedon Acid-Doped Polybenzimidazoles, (2008).
[31] X. Li, Structure-Property Relationships in Polybenzimidazole Materials for Gas Separation and Fuel Cell Applications, Theses and Dissertations, Paper 2671 (2014).
[32] A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, F. Maestroni, M. Parachini, L. Garlaschelli, P.P. Righetti, Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications, Journal of Power Sources, 160 175-180 (2006).
[33] Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Progress in Polymer Science, 34 449-477 (2009).
[34] J.A. Asensio, E.M. Sanchez, P. Gomez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest, Chemial Society Reviews, 39 3210-3239 (2010).
[35] K.D. Kreuer, Proton Conductivity Materials and Applications, Chemistry of Materials, 8 610-641 (1996).
[36] R. Bouchet, E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics, 118 289-299 (1999).
[37] Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells, Journal of the Electrochemical Society, 151 A8-A16 (2004).
[38] L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.-W. Choe, L.S. Ramanathan, S. Yu, B.C. Benicewicz, Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications, Fuel Cells, 5 287-295 (2005).
[39] T.J. Schmidt, High-Temperature Polymer Electrolyte Fuel Cells Durability Insights, (2008).
[40] D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, I. Cantero, Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes, Chemistry of Materials, 16 604-607 (2004).
[41] J. Li, X. Li, S. Yu, J. Hao, W. Lu, Z. Shao, B. Yi, Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells, Energy Conversion and Management, 85 323-327 (2014).
[42] J. Weber, M. Antonietti, A. Thomas, Mesoporous Poly(benzimidazole) NetworksviaSolvent Mediated Templating of Hard Spheres, Macromolecules, 40 1299-1304 (2007).
[43] C.H. Shen, L.C. Jheng, S.L.C. Hsu, J.T.W. Wang, Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells, Journal of Materials Chemistry, 21 15660 (2011).
[44] L.C. Jheng, S.L.C. Hsu, T.Y. Tsai, W.J.Y. Chang, A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells, Journal of Materials Chemistry A, 2 4225 (2014).
[45] R. He, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, Journal of Membrane Science, 226 169-184 (2003).
[46] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, A novel titanium PBI-based composite membrane for high temperature PEMFCs, Journal of Membrane Science, 369 105-111 (2011).
[47] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes, Journal of Power Sources, 196 8265-8271 (2011).
[48] J. Lobato, P. Canizares, M.A. Rodrigo, D. Ubeda, F.J. Pinar, Promising TiOSO4 composite polybenzimidazole-based membranes for high temperature PEMFCs, ChemSusChem, 4 1489-1497 (2011).
[49] F.J. Pinar, P. Cañizares, M.A. Rodrigo, D. Ubeda, J. Lobato, Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount, RSC Advances, 2 1547-1556 (2012).
[50] F.J. Pinar, P. Cañizares, M.A. Rodrigo, D. Úbeda, J. Lobato, Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes, Journal of Power Sources, 274 177-185 (2015).
[51] H. Ye, J. Huang, J.J. Xu, N.K.A.C. Kodiweera, J.R.P. Jayakody, S.G. Greenbaum, New membranes based on ionic liquids for PEM fuel cells at elevated temperatures, Journal of Power Sources, 178 651-660 (2008).
[52] S. Maity, S. Singha, T. Jana, Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica, Polymer, 66 76-85 (2015).
[53] J.T.W. Wang, S.L.C. Hsu, Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids, Electrochimica Acta, 56 2842-2846 (2011).
[54] F. Seland, T. Berning, B. Børresen, R. Tunold, Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte, Journal of Power Sources, 160 27-36 (2006).
[55] J.H. Kim, H.J. Kim, T.H. Lim, H.I. Lee, Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer, Journal of Power Sources, 170 275-280 (2007).
[56] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, F.J. Pinar, Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC, International Journal of Hydrogen Energy, 35 1347-1355 (2010).
[57] S. Martin, Q. Li, T. Steenberg, J.O. Jensen, Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells, Journal of Power Sources, 272 559-566 (2014).
[58] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, D. Úbeda, F.J. Pinar, Study of the Catalytic Layer in Polybenzimidazole-based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support, Fuel Cells, 10 312-319 (2010).
[59] J.O. Park, K. Kwon, M.D. Cho, S.G. Hong, T.Y. Kim, D.Y. Yoo, Role of Binders in High Temperature PEMFC Electrode, Journal of The Electrochemical Society, 158 B675 (2011).
[60] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer, International Journal of Hydrogen Energy, 38 11370-11378 (2013).
[61] P.H. Su, H.L. Lin, Y.P. Lin, T.L. Yu, Influence of catalyst layer polybenzimidazole molecular weight on the polybenzimidazole-based proton exchange membrane fuel cell performance, International Journal of Hydrogen Energy, 38 13742-13753 (2013).
[62] H.L. Lin, T.J. Wu, Y.T. Lin, H.C. Wu, Effect of polyvinylidene difluoride in the catalyst layer on high-temperature PEMFCs, International Journal of Hydrogen Energy, 40 9400-9409 (2015).
[63] J. Lobato, P. Cañizares, M.A. Rodrigo, C. Ruiz-López, J.J. Linares, Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells, Journal of Applied Electrochemistry, 38 793-802 (2008).
[64] H. Lia, Y. Tanga, Z. Wanga, Z. Shia, S. Wua, D. Songa, J. Zhanga, K. Fatiha, J. Zhanga, H. Wanga, Z. Liua, R. Abouatallahb, A. Mazzab, A review of water flooding issues in the proton exchange membrane fuel cell, Journal of Power Sources, 178 103-117 (2008).
[65] R. Schweiss, Benefits of Membrane Electrode Assemblies with Asymmetrical GDL Configurations for PEM Fuel Cells, Fuel Cells, 16 100-106 (2016).
[66] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, J.J. Linares, Optimisation of the Microporous Layer for a Polybenzimidazole-Based High Temperature PEMFC - Effect of Carbon Content, Fuel Cells, 10 770-777 (2010).
[67] J. Hu, H. Zhang, Y. Zhai, G. Liu, B. Yi, 500h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC, International Journal of Hydrogen Energy, 31 1855-1862 (2006).
[68] G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xu, Z.G. Shao, Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI, Journal of Power Sources, 162 547-552 (2006).
[69] Y. Zhai, H. Zhang, G. Liu, J. Hu, B. Yi, Degradation Study on MEA in H3PO4/PBI High-Temperature PEMFC Life Test, Journal of The Electrochemical Society, 154 B72 (2007).
[70] Y. Zhai, H. Zhang, D. Xing, Z.-G. Shao, The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test, Journal of Power Sources, 164 126-133 (2007).
[71] Y. Oono, A. Sounai, M. Hori, Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells, Journal of Power Sources, 189 943-949 (2009).
[72] Y. Oono, T. Fukuda, A. Sounai, M. Hori, Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells, Journal of Power Sources, 195 1007-1014 (2010).
[73] Y. Oono, A. Sounai, M. Hori, Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells, Journal of Power Sources, 210 366-373 (2012).
[74] T.J. Schmidt, J. Baurmeister, Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode, Journal of Power Sources, 176 428-434 (2008).
[75] C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, A Reverse-Current Decay Mechanism for Fuel Cells, Electrochemical and Solid-State Letters, 8 A273 (2005).
[76] S. Yu, L. Xiao, B.C. Benicewicz, Durability Studies of PBI‐based High Temperature PEMFCs, Fuel Cells, 8 165-174 (2008).
[77] M.A. Molleo, X. Chen, H.J. Ploehn, B.C. Benicewicz, High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties, Fuel Cells, 15 150-155 (2015).
[78] Wikipedia, Fourier transform infrared spectroscopy.
[79] 王應瓊, 儀器分析, 中央圖書出版社 (1997).
[80] 劉興鑑, 孫逸民, 陳玉舜, 趙敏勳, 謝明學, 儀器分析, 全威圖書(2007).
[81] Wikipedia, Nuclear magnetic resonance.
[82] R. He, Q. Li, A. Bach, J. Jensen, N. Bjerrum, Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells, Journal of Membrane Science, 277 38-45 (2006).
[83] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, G. Manjavacas, Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs, Journal of Membrane Science, 280 351-362 (2006).
[84] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, J.A. Aguilar, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, Journal of Membrane Science, 306 47-55 (2007).
[85] G. Qian, B.C. Benicewicz, Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells, Journal of Polymer Science Part A: Polymer Chemistry, 47 4064-4073 (2009).
[86] J.S. Yang, L.N. Cleemann, T. Steenberg, C. Terkelsen, Q.F. Li, J.O. Jensen, H.A. Hjuler, N.J. Bjerrum, R.H. He, High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC, Fuel Cells, 14 7-15 (2014).
[87] J. Liao, J. Yang, Q. Li, L.N. Cleemann, J.O. Jensen, N.J. Bjerrum, R. He, W. Xing, Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions, Journal of Power Sources, 238 516-522 (2013).
[88] T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama, T. Abe, Z. Ogumi, Durability of perfluorinated ionomer membrane against hydrogen peroxide, Journal of Power Sources, 158 1222-1228 (2006).
[89] H. Tang, S. Peikang, S.P. Jiang, F. Wang, M. Pan, A degradation study of Nafion proton exchange membrane of PEM fuel cells, Journal of Power Sources, 170 85-92 (2007).
[90] Z. Chang, H. Pu, D. Wan, L. Liu, J. Yuan, Z. Yang, Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells, Polymer Degradation and Stability, 94 1206-1212 (2009).
[91] Z. Chang, H. Pu, D. Wan, M. Jin, H. Pan, Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles, Polymer Degradation and Stability, 95 2648-2653 (2010).
[92] S. Wang, C. Zhao, W. Ma, G. Zhang, Z. Liu, J. Ni, M. Li, N. Zhang, H. Na, Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells, Journal of Membrane Science, 411-412 54-63 (2012).
[93] K.D.Kreuer, Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochimica Acta, 43 1281-1288 (1998).
[94] T. Tingelöf, J.K. Ihonen, A rapid break-in procedure for PBI fuel cells, International Journal of Hydrogen Energy, 34 6452-6456 (2009).
[95] R. Borup, J. Meyers, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation., Chemical Reviews, 107 3904-3951 (2007).
[96] L.C. Jheng, W.J.Y. Chang, S.L.C. Hsu, P.Y. Cheng, Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells, Journal of Power Sources, 323 57-66 (2016).
校內:2021-08-01公開