簡易檢索 / 詳目顯示

研究生: 程伯揚
Cheng, Po-Yang
論文名稱: 聚苯咪唑薄膜與磺酸化咪唑/聚苯咪唑薄膜於高溫型質子交換膜燃料電池性能研究
Performance Study of Polybenzimidazole Membranes and 1H-imidazole-4-sulfonic acid /Polybenzimidazole Hybrid Membranes for High Temperature Proton Exchange Membrane Fuel Cells
指導教授: 許聯崇
Hsu, Lien-Chung Steve
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 聚苯咪唑高溫型質子交換膜燃料電池質子導電度耐久度測試磷酸流失
外文關鍵詞: polybenzimidazole, high-temperature PEMFC, proton conductivity, durability, acid loss
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用3,3’-diaminobenzidine和2,2-bis (4-carboxyphenyl)-hexaflouopropane兩種單體合成出含氟基團,不同於商用並可溶於有機溶劑的聚苯咪唑(Polybenzimidazole,PBI)與磺酸化有機分子1H-imidazole-4-sulfonic acid (ImSA)。在成膜過程中添加ImSA分子與PBI混摻,製備了一系列的pristine PBI薄膜與ImSA-PBI複合薄膜。期望添加ImSA分子能提升薄膜的質子導電度。一系列薄膜性質測試探討pristine PBI薄膜與ImSA-PBI複合薄膜是否適用於高溫型質子交換膜燃料電池。ImSA的添加使薄膜熱性質、抗化性與機械強度略有下降,卻提升了磷酸摻雜量與質子導電度,在170 oC時有質子導電度達0.28 S/cm。
    將pristine PBI薄膜與ImSA-PBI複合薄膜製作成膜電極進行單電池效能與長時間測試,在負載0.2 A/cm2電流時Pristine PBI薄膜的最大功率密度可達540 mW/cm2,ImSA-PBI複合薄膜最大功率密度可達610 mW/cm2。經過開關測試 (160 oC下12小時負載電流後再停止操作並降回室溫12小時) 與30天穩態測試 (150 oC下負載電流操作720小時)後兩種薄膜的單電池都無衰退現象,但ImSA-PBI複合薄膜較容易流失磷酸。

    In this work, sulfonated organic compound, 1H-imidazole-4-sulfonic acid (ImSA), and fluorine-containing polybenzimidazole (6F-PBI) were synthesized. A series of pristine PBI membranes and ImSA-PBI hybrid membranes were prepared. We expected that adding ImSA molecules into PBI membranes could improve the proton conductivity. The pristine PBI membranes and ImSA-PBI hybrid membranes properties for HT-PEMFC have been study. Adding ImSA molecules slightly reduced the properties of membrane but improved the acid doping level and proton conductivity. The proton conductivity of ImSA-PBI hybrid membrane could reach 0.28 S/cm at 170 oC. We fabricated membrane electrode assemblies (MEA) with pristine PBI membranes and ImSA-PBI hybrid membranes. In the single cell test, the max power density at current density of 1.2 A/cm2 were 540 and 610 mW/cm2 for pristine PBI membrane and ImSA-PBI hybrid membrane, respectively. We conducted a startup-shutdown test (operated at 160 oC with 0.2 A/cm2 for 12 h and then 12 h off at room temperature) and a 30 days steady-state test (150 oC with 0.2 A/cm2 ). There was no degradation for both pristine PBI membrane and ImSA-PBI hybrid membrane, but we found that ImSA-PBI hybrid membrane had more phosphoric acid loss during operation.

    摘要 I Extended Abstract II 誌謝 X 總目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究背景 4 1.3 研究動機與目的 6 第二章 文獻回顧與原理 7 2.1 質子交換膜燃料電池 (PEMFC) 原理 7 2.2 高溫型質子交換膜燃料電池用Polybenzimidazole (PBI) 9 2.3 質子導電度 12 2.3.1 質子傳導原理 12 2.3.2 提升質子導電度 13 2.4 膜電極製作與最佳化 17 2.5 單電池長時間測試與衰退機制 (degradation mechanisms) 19 2.5.1 單電池衰退機制 19 2.5.2 電池長時間穩定性測試 21 第三章 實驗方法及步驟 25 3.1 實驗材料 25 3.2 實驗儀器 25 3.3 實驗步驟 26 3.3.1 Polybenzimidazole (6F-PBI) 合成 26 3.3.2 磺酸化Imidazole 1H-imidazole-4-sulfonic acid (ImSA) 合成 27 3.3.3 Pristine PBI薄膜與ImSA-PBI複合薄膜製備 27 3.3.4 Pristine PBI薄膜與ImSA-PBI複合薄膜磷酸摻雜 28 3.3.5 膜電極製作 29 3.3.6 單電池組裝與測試 30 3.4 結構鑑定 32 3.4.1 傅利葉轉換紅外線光譜分析 (FT-IR) 32 3.4.2 核磁共振光譜分析 (NMR) 33 3.4.3 元素分析 (EA) 34 3.5 性質分析 35 3.5.1 固有黏度 (Inherent viscosity) 量測 35 3.5.2 熱重損失分析儀 (TGA) 35 3.5.3 機械性質分析 (Mechanical properties) 36 3.5.4 抗氧化分析 (Oxidative stability test) 36 3.5.5 電化學阻抗圖譜 (Electrochemical Impedance Spectroscopy,EIS) 36 第四章 結果與討論 42 4.1 合成結構鑑定與性質分析 42 4.1.1 6F-PBI之合成 42 4.1.2 6F-PBI固有黏度量測 43 4.1.3 傅利葉轉換紅外線光譜分析 43 4.1.4 核磁共振光譜分析 46 4.1.5 元素分析 48 4.2 薄膜性質分析 49 4.2.1 熱重損失分析 49 4.2.2 薄膜機械性質分析 52 4.2.3 薄膜抗氧化分析 53 4.2.4 薄膜摻雜磷酸之分析 56 4.2.5 薄膜質子導電度分析 58 4.3 Pristine PBI薄膜與ImSA-PBI薄膜單電池元件測試分析 60 4.3.1 單電池元件效能分析 60 4.3.2 單電池開關測試 63 4.3.3 單電池長時間穩態測試 68 第五章 結論與未來展望 72 第六章 參考文獻 74

    [1] W.R. Grove, On Voltaic Series and the Combination of Gases by Platinum Philosophical Magazine and Journal of Science, XIV 127-130 (1839).
    [2] Wikipedia, Fuel cells.
    [3] U.S. DOE, FUEL CELL TECHNOLOGIES OFFICE.
    [4] E.G.S.P. Inc., Fuel Cell Handbook (Fifth Edition), Science Applications International Corporation, (2000).
    [5] N. Guerrero Moreno, M. Cisneros Molina, D. Gervasio, J.F. Pérez Robles, Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost, Renewable and Sustainable Energy Reviews, 52 897-906 (2015).
    [6] FuelCellToday, (2014).
    [7] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chemistry of Materials, 15 4896-4915 (2003).
    [8] Y. Shao, G. Yin, Z. Wang, Y. Gao, Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges, Journal of Power Sources, 167 235-242 (2007).
    [9] S. Subianto, Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells, Polymer International, 63 1134-1144 (2014).
    [10] M.A. Haque, A.B. Sulong, K.S. Loh, E.H. Majlan, T. Husaini, R.E. Rosli, Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review, International Journal of Hydrogen Energy, (2016).
    [11] A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B.G. Pollet, A. Ingrama, W. Bujalski, High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review, Journal of Power Sources, 231 264-278 (2013).
    [12] Q. Li, R. He, J.-A. Gao, J.O. Jensen, N.J. Bjerrum, The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C, Journal of The Electrochemical Society, 150(12) A1599-A1605 (2003).
    [13] J.S. Wainright, J.-T. Wang, D. Weng, R.F. Savinell, M. Litt, Acid‐Doped Polybenzimidazoles A New Polymer Electrolyte, Journal of The Electrochemical Society, 142 (1995).
    [14] Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, 151 A8 (2004).
    [15] K.D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, J. Maier, Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochimica Acta, 43 1281-1288 (1998).
    [16] M. Schuster, W.H. Meyer, G. Wegnera, H.G. Herz, M. Iseb, M. Schuster, K.D. Kreuer, J. Maier, Proton mobility in oligomer-bound proton solvents- imidazole immobilization via flexible spacers, Solid State Ionics, 145 85-92 (2001).
    [17] A. Schechtera, R.F. Savinell, Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells, Solid State Ionics, 147 181-187 (2002).
    [18] S. Li, Z. Zhou, M. Liu, W. Li, J. Ukai, K. Hase, M. Nakanishi, Synthesis and properties of imidazole-grafted hybrid inorganic–organic polymer membranes, Electrochimica Acta, 51 1351-1358 (2006).
    [19] S.W. Chuang, S.L.C. Hsu, M.L. Yang, Preparation and characterization of fluorine-containing polybenzimidazole/imidazole hybrid membranes for proton exchange membrane fuel cells, European Polymer Journal, 44 2202-2206 (2008).
    [20] C.H. Shen, S.L.C. Hsu, E. Bulycheva, N. Belomoina, Polybenzimidazole/1H-imidazole-4-sulfonic acid hybrid membranes for high-temperature proton exchange membranes fuel cells, Journal of Membrane Science, 399-400 11-15 (2012).
    [21] R. O'Hayre, 車碩源, W. Colella, F.B. Prinz, 燃料電池基礎 Fuel cell fundamental, 全華圖書 (2008).
    [22] H. Vogel, C.S. Marvel, Polybenzimidazoles, new thermally stable polymers, Journal of Polymer Science 50 511-539 (1961).
    [23] L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, B.C. Benicewicz, High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol−Gel Process, Chemistry of Materials, 17 5328-5333 (2005).
    [24] J. Asensio, Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting, Journal of Membrane Science, 241 89-93 (2004).
    [25] C. Wannek, B. Kohnen, H.F. Oetjen, H. Lippert, J. Mergel, Durability of ABPBI-based MEAs for High Temperature PEMFCs at Different Operating Conditions, Fuel Cells, 8 87-95 (2008).
    [26] Y. Oono, A. Sounai, M. Hori, Prolongation of lifetime of high temperature proton exchange membrane fuel cells, Journal of Power Sources, 241 87-93 (2013).
    [27] S.W. Chuang, S.L.C. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications, Journal of Polymer Science Part A: Polymer Chemistry, 44 4508-4513 (2006).
    [28] H. Pu, L. Wang, H. Pan, D. Wan, Synthesis and characterization of fluorine-containing polybenzimidazole for proton conducting membranes in fuel cells, Journal of Polymer Science Part A: Polymer Chemistry, 48 2115-2122 (2010).
    [29] Q.F. Li, H.C. Rudbeck, A. Chromik, J.O. Jensen, C. Pan, T. Steenberg, M. Calverley, N.J. Bjerrum, J. Kerres, Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes, Journal of Membrane Science, 347 260-270 (2010).
    [30] Q. Li, J.O. Jensen, Membranes for High Temperature PEMFC Basedon Acid-Doped Polybenzimidazoles, (2008).
    [31] X. Li, Structure-Property Relationships in Polybenzimidazole Materials for Gas Separation and Fuel Cell Applications, Theses and Dissertations, Paper 2671 (2014).
    [32] A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, F. Maestroni, M. Parachini, L. Garlaschelli, P.P. Righetti, Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications, Journal of Power Sources, 160 175-180 (2006).
    [33] Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Progress in Polymer Science, 34 449-477 (2009).
    [34] J.A. Asensio, E.M. Sanchez, P. Gomez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest, Chemial Society Reviews, 39 3210-3239 (2010).
    [35] K.D. Kreuer, Proton Conductivity Materials and Applications, Chemistry of Materials, 8 610-641 (1996).
    [36] R. Bouchet, E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics, 118 289-299 (1999).
    [37] Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells, Journal of the Electrochemical Society, 151 A8-A16 (2004).
    [38] L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.-W. Choe, L.S. Ramanathan, S. Yu, B.C. Benicewicz, Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications, Fuel Cells, 5 287-295 (2005).
    [39] T.J. Schmidt, High-Temperature Polymer Electrolyte Fuel Cells Durability Insights, (2008).
    [40] D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, I. Cantero, Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes, Chemistry of Materials, 16 604-607 (2004).
    [41] J. Li, X. Li, S. Yu, J. Hao, W. Lu, Z. Shao, B. Yi, Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells, Energy Conversion and Management, 85 323-327 (2014).
    [42] J. Weber, M. Antonietti, A. Thomas, Mesoporous Poly(benzimidazole) NetworksviaSolvent Mediated Templating of Hard Spheres, Macromolecules, 40 1299-1304 (2007).
    [43] C.H. Shen, L.C. Jheng, S.L.C. Hsu, J.T.W. Wang, Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells, Journal of Materials Chemistry, 21 15660 (2011).
    [44] L.C. Jheng, S.L.C. Hsu, T.Y. Tsai, W.J.Y. Chang, A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells, Journal of Materials Chemistry A, 2 4225 (2014).
    [45] R. He, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, Journal of Membrane Science, 226 169-184 (2003).
    [46] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, A novel titanium PBI-based composite membrane for high temperature PEMFCs, Journal of Membrane Science, 369 105-111 (2011).
    [47] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes, Journal of Power Sources, 196 8265-8271 (2011).
    [48] J. Lobato, P. Canizares, M.A. Rodrigo, D. Ubeda, F.J. Pinar, Promising TiOSO4 composite polybenzimidazole-based membranes for high temperature PEMFCs, ChemSusChem, 4 1489-1497 (2011).
    [49] F.J. Pinar, P. Cañizares, M.A. Rodrigo, D. Ubeda, J. Lobato, Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount, RSC Advances, 2 1547-1556 (2012).
    [50] F.J. Pinar, P. Cañizares, M.A. Rodrigo, D. Úbeda, J. Lobato, Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes, Journal of Power Sources, 274 177-185 (2015).
    [51] H. Ye, J. Huang, J.J. Xu, N.K.A.C. Kodiweera, J.R.P. Jayakody, S.G. Greenbaum, New membranes based on ionic liquids for PEM fuel cells at elevated temperatures, Journal of Power Sources, 178 651-660 (2008).
    [52] S. Maity, S. Singha, T. Jana, Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica, Polymer, 66 76-85 (2015).
    [53] J.T.W. Wang, S.L.C. Hsu, Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids, Electrochimica Acta, 56 2842-2846 (2011).
    [54] F. Seland, T. Berning, B. Børresen, R. Tunold, Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte, Journal of Power Sources, 160 27-36 (2006).
    [55] J.H. Kim, H.J. Kim, T.H. Lim, H.I. Lee, Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer, Journal of Power Sources, 170 275-280 (2007).
    [56] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, F.J. Pinar, Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC, International Journal of Hydrogen Energy, 35 1347-1355 (2010).
    [57] S. Martin, Q. Li, T. Steenberg, J.O. Jensen, Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells, Journal of Power Sources, 272 559-566 (2014).
    [58] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, D. Úbeda, F.J. Pinar, Study of the Catalytic Layer in Polybenzimidazole-based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support, Fuel Cells, 10 312-319 (2010).
    [59] J.O. Park, K. Kwon, M.D. Cho, S.G. Hong, T.Y. Kim, D.Y. Yoo, Role of Binders in High Temperature PEMFC Electrode, Journal of The Electrochemical Society, 158 B675 (2011).
    [60] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer, International Journal of Hydrogen Energy, 38 11370-11378 (2013).
    [61] P.H. Su, H.L. Lin, Y.P. Lin, T.L. Yu, Influence of catalyst layer polybenzimidazole molecular weight on the polybenzimidazole-based proton exchange membrane fuel cell performance, International Journal of Hydrogen Energy, 38 13742-13753 (2013).
    [62] H.L. Lin, T.J. Wu, Y.T. Lin, H.C. Wu, Effect of polyvinylidene difluoride in the catalyst layer on high-temperature PEMFCs, International Journal of Hydrogen Energy, 40 9400-9409 (2015).
    [63] J. Lobato, P. Cañizares, M.A. Rodrigo, C. Ruiz-López, J.J. Linares, Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells, Journal of Applied Electrochemistry, 38 793-802 (2008).
    [64] H. Lia, Y. Tanga, Z. Wanga, Z. Shia, S. Wua, D. Songa, J. Zhanga, K. Fatiha, J. Zhanga, H. Wanga, Z. Liua, R. Abouatallahb, A. Mazzab, A review of water flooding issues in the proton exchange membrane fuel cell, Journal of Power Sources, 178 103-117 (2008).
    [65] R. Schweiss, Benefits of Membrane Electrode Assemblies with Asymmetrical GDL Configurations for PEM Fuel Cells, Fuel Cells, 16 100-106 (2016).
    [66] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, J.J. Linares, Optimisation of the Microporous Layer for a Polybenzimidazole-Based High Temperature PEMFC - Effect of Carbon Content, Fuel Cells, 10 770-777 (2010).
    [67] J. Hu, H. Zhang, Y. Zhai, G. Liu, B. Yi, 500h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC, International Journal of Hydrogen Energy, 31 1855-1862 (2006).
    [68] G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xu, Z.G. Shao, Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI, Journal of Power Sources, 162 547-552 (2006).
    [69] Y. Zhai, H. Zhang, G. Liu, J. Hu, B. Yi, Degradation Study on MEA in H3PO4/PBI High-Temperature PEMFC Life Test, Journal of The Electrochemical Society, 154 B72 (2007).
    [70] Y. Zhai, H. Zhang, D. Xing, Z.-G. Shao, The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test, Journal of Power Sources, 164 126-133 (2007).
    [71] Y. Oono, A. Sounai, M. Hori, Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells, Journal of Power Sources, 189 943-949 (2009).
    [72] Y. Oono, T. Fukuda, A. Sounai, M. Hori, Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells, Journal of Power Sources, 195 1007-1014 (2010).
    [73] Y. Oono, A. Sounai, M. Hori, Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells, Journal of Power Sources, 210 366-373 (2012).
    [74] T.J. Schmidt, J. Baurmeister, Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode, Journal of Power Sources, 176 428-434 (2008).
    [75] C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, A Reverse-Current Decay Mechanism for Fuel Cells, Electrochemical and Solid-State Letters, 8 A273 (2005).
    [76] S. Yu, L. Xiao, B.C. Benicewicz, Durability Studies of PBI‐based High Temperature PEMFCs, Fuel Cells, 8 165-174 (2008).
    [77] M.A. Molleo, X. Chen, H.J. Ploehn, B.C. Benicewicz, High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties, Fuel Cells, 15 150-155 (2015).
    [78] Wikipedia, Fourier transform infrared spectroscopy.
    [79] 王應瓊, 儀器分析, 中央圖書出版社 (1997).
    [80] 劉興鑑, 孫逸民, 陳玉舜, 趙敏勳, 謝明學, 儀器分析, 全威圖書(2007).
    [81] Wikipedia, Nuclear magnetic resonance.
    [82] R. He, Q. Li, A. Bach, J. Jensen, N. Bjerrum, Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells, Journal of Membrane Science, 277 38-45 (2006).
    [83] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, G. Manjavacas, Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs, Journal of Membrane Science, 280 351-362 (2006).
    [84] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, J.A. Aguilar, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, Journal of Membrane Science, 306 47-55 (2007).
    [85] G. Qian, B.C. Benicewicz, Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells, Journal of Polymer Science Part A: Polymer Chemistry, 47 4064-4073 (2009).
    [86] J.S. Yang, L.N. Cleemann, T. Steenberg, C. Terkelsen, Q.F. Li, J.O. Jensen, H.A. Hjuler, N.J. Bjerrum, R.H. He, High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC, Fuel Cells, 14 7-15 (2014).
    [87] J. Liao, J. Yang, Q. Li, L.N. Cleemann, J.O. Jensen, N.J. Bjerrum, R. He, W. Xing, Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions, Journal of Power Sources, 238 516-522 (2013).
    [88] T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama, T. Abe, Z. Ogumi, Durability of perfluorinated ionomer membrane against hydrogen peroxide, Journal of Power Sources, 158 1222-1228 (2006).
    [89] H. Tang, S. Peikang, S.P. Jiang, F. Wang, M. Pan, A degradation study of Nafion proton exchange membrane of PEM fuel cells, Journal of Power Sources, 170 85-92 (2007).
    [90] Z. Chang, H. Pu, D. Wan, L. Liu, J. Yuan, Z. Yang, Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells, Polymer Degradation and Stability, 94 1206-1212 (2009).
    [91] Z. Chang, H. Pu, D. Wan, M. Jin, H. Pan, Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles, Polymer Degradation and Stability, 95 2648-2653 (2010).
    [92] S. Wang, C. Zhao, W. Ma, G. Zhang, Z. Liu, J. Ni, M. Li, N. Zhang, H. Na, Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells, Journal of Membrane Science, 411-412 54-63 (2012).
    [93] K.D.Kreuer, Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochimica Acta, 43 1281-1288 (1998).
    [94] T. Tingelöf, J.K. Ihonen, A rapid break-in procedure for PBI fuel cells, International Journal of Hydrogen Energy, 34 6452-6456 (2009).
    [95] R. Borup, J. Meyers, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation., Chemical Reviews, 107 3904-3951 (2007).
    [96] L.C. Jheng, W.J.Y. Chang, S.L.C. Hsu, P.Y. Cheng, Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells, Journal of Power Sources, 323 57-66 (2016).

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE