| 研究生: |
吳宗榮 Wu, Zong-Rong |
|---|---|
| 論文名稱: |
利用共電鍍與硒化形成銅銦鋁硒太陽能電池於具有氧化鋁阻障層的可撓式不鏽鋼基板上 Fabrication of flexible CuInAlSe2 solar cells with AlOx diffusion barrier by selenization of co-plated Cu/In precursors |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 二硒化銅銦 、銅銦鋁硒 、氧化鋁 、薄膜太陽能電池 、可撓 、不鏽鋼 、電鍍 |
| 外文關鍵詞: | CuInSe2, Cu(Inx,Al1-x)Se2, thin film solar cell, flexible, stainless steel, electro-deposition |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電鍍具有低成本、製程簡單、製造大面積材料的潛力,且可撓式基板的應用對於產業界之發展上有相當大的助益。本論文利用共電鍍方式取代傳統的物理氣相沉積法(濺鍍),來製備Cu-In先驅層於具有氧化鋁阻障層與MoAl背電極的可撓式不鏽鋼基板上,再經由硒化的方式,形成CIAS吸收層,並製作CIAS薄膜太陽能電池。
背電極成份與結構、電鍍液中Cu-In相對濃度、錯合劑,硒化溫度與時間等實驗參數皆會影響最終CIAS吸收層的薄膜品質,本論文透過X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、薄膜測厚儀(Alpha step)及能量分散光譜儀(EDS),對製備的CIAS薄膜進行晶體結構、表面形貌、薄膜厚度和組成成分進行分析。
最後成功地做出可撓式CIAS薄膜太陽能電池,電流-電壓特性曲線顯示,此元件具有顯著之二極體特性,目前最佳元件之數據為:Voc=100m V、Jsc = 25.48 mA/cm2、F.F. = 37 %、η = 0.94 %。
Electro-deposition (ED) is a simple and low cost process and has the potential for large scale production. Using flexible substrate for solar cells has considerable benefits to the development of photovoltaic industry. In this dissertation, instead of traditional physical vapor deposition I used ED process to co-plating Cu-In precursors on a flexible stainless steel substrate, which has AlOx barrier layer and MoAl back electrode. After selenization process, the CIAS absorber layer was formed and CIAS solar cells were successfully fabricated.
Parameters and variables, such as the composition and structure of the back electrode, relative Cu-In concentrations in the plating solution, complexing agent, temperature and duration of the selenization process, will have significant influence on the CIAS absorber layer. The study used X-ray diffractometer for phase identification, SEM to observe morphology of the thin films, α-step to measure the thickness of the films, and X-ray energy dispersive spectroscopy to analyze the stoichiometry of the absorber layer.
CIAS thin film solar cells have been successfully fabricated on a stainless steel flexible substrate. From the current-voltage characteristic plots, this device has remarkable diode characteristic. Currently, the best solar cell has following photovoltaic parameters: Voc=100m V, Jsc = 25.48 mA/cm2, F.F. = 37 % and η = 0.94 % .
[1] M. Hvistendahl, “Coal Ash Is More Radioactive than Nuclear Waste”, Scientific American, December 13, (2007).
[2] 陳子秦,太陽能電池產業製程及污染防治簡介,經濟部環保技術e報,第59期,2008年。
[3] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, “Solar cell efficiency tables (version 37)”, Prog. Photovolt, Res. Appl., 19, p.84, (2011).
[4] 蔡進譯,物理雙月刊,二十七卷五期,p.701-719,2005年。
[5] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, Prog. Photovolt, Res. Appl, in press, (2011).
[6] 戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會 發行出版, p.5,2008年。
[7] 戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會 發行出版, p.7,2008年。
[8] 楊德仁,太陽能電池材料,五南圖書出版公司, p.5,2008年。
[9] 陳頤承,郭昭顯,陳俊亨,太陽能電池量測技術,工業材料雜誌 258期, 2006年。
[10] 楊德仁,太陽能電池材料,五南圖書出版公司, p.6,2008年。
[11] A. Luque and S. Hegedus “Handbook of photovoltaic science and engineering”, wiley, p.63, (2003).
[12] J .Yang, “Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency”, photovoltaics,26th PVSC, p.563, (1997).
[13] 胡振國,光伏電池-漸趨重要,光訊,1999年。
[14] 曾百亨,CuInSe2 薄膜太陽電池,光訊, 1997年。
[15] K.W. Mitchell , “CuInSe2 cells and modules”, IEEE transaction on electron devices, 37(2), p.410, (1990).
[16] B. Mmler, M. Powalla and H.W. Schock, “CIS-based thin film photovoltaic modules”, Prog. Photovolt: Res.Appl, 10, p.149, (2002).
[17] C. Guillen and J. Herrero, “ Optical properties of electrochemically deposited CuInSe2 thin films”, Solar Energy Materials, 23, p.31, (1991).
[18] K. Zweibel, B. Jackson and A. Hermann, “Comment on critical materials assessment program”, Solar Cells, 16, p.631, (1986).
[19] R. W. Birkmire, L. C. Dinetta, P. G. Lasswell, J. D. Meakin and J. E. Phillips, “High efficiency CuInSe2 based heterojuction soalr cells : Fabrication and results”, Solar Cells, 16, p.419, (1986).
[20] 葉文進,電化學沉積二硒化銅銦鎵薄膜研究,吳鳳技術學院光 機電暨材料研究所,2008年。
[21] L. Thouin and J. Vedel, “Electrodeposition and Characterization of CulnSe2 Thin Films”, The Electrochemical Society, 142, p.2996, (1995).
[22] R.W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: Present Status and Future Potential”, Annual Review of Materials Science, 27, p.627, (1997).
[23] R. N. Bhattacharya and J. Keane, “Electrodeposition and characterisation of CuInSe2 for applications in thin film solar cells”, Electrochem. Soc, 143, p.854, (1984).
[24] R. N. Bhattacharya, P. J. Sebastian and X . Mathew, “ Preparation and characterization of copper indium deselnide films by electroless deposition”, Solar Energy Materials and Solar Cells, 63, p.316, (2000).
[25] P. J. Sebastian, E. Calixto and A. Fernandez, “Electro/electroless deposition and characterrization of Cu-In precursors for CIS films”, Crystal Growth, 169, p.287, (1996).
[26] R. Friedfeld, R. P. Raffaelle and J. G. Mantovani, “ Electrodeposition of CuInxGa1-xSe2 thin films”, Solar Energy Materials & Solar Cells, 58, p.375, (1999).
[27] J.W. Chu and D. Honeman, “Degradation processes in polycry- stalline copper indium diselenide photoelecrochemical cells”, Solar cells, 31, p.197, (1991).
[28] J. L. Shay, B. Tell, H. M. Kasper and L. M. Schiavone, “Electronic Structure of AgInSe2 and CuInSe2”, APS Phys. 7, p.4485, (1973).
[29] M.A, “Limiting efficiencies for photovoltaics solar conversion in multigap systems”, Solar energy materials and Solar cells, 43, p.203, (1996).
[30] B. Pamplin and R. S. Feigelson, “Spary pyrolysis of CuInSe2 and related ternary semiconducting compounds”, Thin Solid Films, 60, p.144, (1979).
[31] S. P. Grindle, A. H. Clark, S. R.Serej, J. Mcneily and L. L. Mcneily, “The effects of doping sb on properties of CuInSe2 thin-film solar cells”, Applied Physics, 51, p.10, (1980) .
[32] N. Romeo, V. Canevari, G. Sberveglieri and A. Bosio, “Growth of Large-Grain CuInSe2 Thin Films by Flash-Evaporation and Sputtering”, Solar Cells, 16, p.155, (1986).
[33] R. K. Pandey, S. N. Sahu and S. Chandra, “Handbook of Semi- conductor Electrodeposition”, Marcel Dekker, New York, (1996).
[34] D. Pottier and G. Maurin, “ Preparation of polycrystalline thin films of CuInSe2 by electrodeposition”, Appl. Electrochem, 19, p.361, (1989).
[35] R. N. Bhattacharya and A. M. Fernandez, “CuIn1-xGaxSe2-based photo- voltaic cells from electrodeposited precursor films”, Solar Energy Materials & Solar Cells, 76, p.331, (2003).
[36] A. Kampmann, V. Sittinger, J. Rechid and R. Reineke-Koch , “Large area electrodeposition of Cu(In,Ga)Se2”, Thin Solid Films, 361-362, p.309, (2000).
[37] D. Braunger, D. Hariskos, G. Bilger, U. Rau and H.W. Schock, “Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films”, Thin Solid Films, 361-362, p.161, (2000).
[38] M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter and H. W.Schock, “Influence of Substrates on the Electrical Properties of Cu(In,Ga)Se2 Thin Films”, 1st World Conference on Photovoltaic Energy Conversion, p.156, (1994).
[39] T.J. Vink, M.A.J. Somers, J.L.C. Daams and A.G. Dirks, “Stress, strain, and microstructure of sputter-deposited Mo thin films”, applied physics, 70, p.4301, (1991).
[40] R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P.Rogin and O.Yazdani-Assl, “CIGS thin-film solar cells on steel substrates”, Thin Solid Films, 517, p.2415 ,(2009).
[41] F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules”, Solar Energy, 77, p.685, (2004).
[42] S. Chichibu, S. Matsumoto, S. Shirakata, S. Isomura and H. Higuchi, “Excitonic photoluminescence in a CuAlSe2 chalcopyrite semi- conductor grown by low-pressure metalorganic chemical vapor deposition”, J. Appl. Phys. 74/10, p.6446, (1993).
[43] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, “Short Communication: Accelerated Publication 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Photovoltaics: Research and Applications, 16, p.235, (2008).
[44] R. Schaffler and H.W. Schock, “High mobility ZnO:Al thin films grown by reactive DC magnetron sputtering”, CONFERENCE RECORD IEEE , 93, p.1026, (1993).
[45] 尤光先,電鍍工程學,徐氏基金會出版,1976年。
[46] 賴耿陽,實用電鍍技術全集,復漢出版社,1981年。
[47] 蕭宏,半導體製程技術導論,台灣培生教育出版公司, p.461,2007年。
[48] 何生龍,彩色電鍍技術,化學工業出版社,2008年。
[49] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, “Properties of 19.2% Efficiency ZnO/ CdS/ CuInGaSe2 Thin-film Solar Cells”, Prog. Photovolt: Res. Appl., 11, p.225, (2003).
[50] N. Fathy, R. Kobayashi and M. Ichimura, “Preparation of ZnS thin films by the pulsed electrochemical deposition”, Materials Science and Engineering, 107, p. 271, (2004).
[51] M. E. Calixto, R. N. Bhattacharya, P. J. Sebastian, A. M. Fernandez, S. A.Gamboa and R. N. Noufi, “Cu(In,Ga)Se2 based photovoltaic structure by electrodeposition and processing”, Solar Energy Materials and Solar Cells, 55, p.23, (1998).
[52] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料學 會, p.169,1996年。
[53] 凌永健,二次離子質譜儀之分析,材料分析,第52期,p.36-48,1989年。
[54] 劉邦基,施靜蘋,陳翠英,質譜分析的回顧與展望,科儀新知雜誌第二期,p.104,1990年。
[55] 蘇炎坤,二次離子質譜儀之分析及應用,科儀新知第44期,p.9,1988年。
[56] L.S. Darken and R.W. Gurry, Physical Chemistry of Metals, McGraw-Hill, p.349, (1953).
[57] W.A. Lanford, P.J. Ding, W. Wang, S. Hymes and S.P. Muraka, Low-temperature passivation of copper by doping with Al or Mg, Thin Solid Films, 262, p.234, (1995).
[58] P.J. Ding, W.A. Lanford, S. Hymes and S.P. Muraka, Effects of the addition of small amounts of Al to copper: Corrosion, resistivity, adhesion, morphology, and diffusion, Journal of Applied Physics, 75, p.3627, (1994).
[59] T. Nakada, D. Iga, H. Ohbo, A. Kunioka “Effects of Sodium on Cu(In,Ga)Se2-Based Thin Films and Solar Cells”, Appl. Phys., 36, p.732, (1997).
[60] S. Niki, P. J. Fons, A. Yamada, Y. Lacroix, H. Shibata, and H. Oyanagi, M. Nishitani, T. Negami, and T. Wada, “Effects of the surface Cu2-xSe phase on the growth and properties of CuInSe2 films” , Applied Physics Letters, 74, p.1630, (1999).
[61] K. W. Mitchell, C. Eberspacher, J. H. Eemer, K. L. Pauls and D. N. Pier, “CuInSe2 Cells and Modules”, IEEE transations on electron devices, 37. no. 2 , p.410, (1990).