| 研究生: |
楊凱荔 Yang, Kai-Li |
|---|---|
| 論文名稱: |
建立與驗證中風之預測模型於台灣第二型糖尿病病患 Development and validation of risk prediction equations for stroke among patients with type 2 diabetes in Taiwan |
| 指導教授: |
歐凰姿
Ou, Huang-Tz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 199 |
| 中文關鍵詞: | 第二型糖尿病 、中風 、風險預測 、預測模型 |
| 外文關鍵詞: | Type II DM, stroke, prediction model, risk equation |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景
近年來,許多疾病的預測模型(prediction models)已被廣泛應用在預測病人健康結果及醫療花費的評估。目前,針對第二型糖尿病病人的併發症以及醫療花費的模擬預測模型中,已有英國糖尿病前瞻性研究危險引擎(UK Prospective Diabetes Study risk engine, UKPDS risk engine)等風險預測式可以預測糖尿病共病症的罹病風險;然而,若要應用現有的模型於台灣時,仍有許多不足之處。因此,本研究將利用本土資料進行第二型糖尿病與中風的風險預測式建立,並利用內部資料驗證其預測能力,以期能提供國人一個更佳的風險預測,進而評估風險後進行疾病預防措施。
研究目的
1. 評估現有中風之風險預測式(risk equations)(e.g., UKPDS risk engine, RECODe prediction model) 於台灣第二型糖尿病預測中風之能力。
2. 建構台灣第二型糖尿病中風之風險預測式(risk equations),以進一步未來建立糖尿病疾病演進與中風的模擬模型(simulation models)。
3. 針對建立的風險評估式(risk equations)進行內部確效(internal validation)。
研究方法
本研究採用回溯性世代 (retrospective cohort)進行研究。研究族群為2011年起至在成大醫院就診之第二型糖尿病個案,以就診第一年的就醫資料為弊病人基本資料,將族群隨機分成4:1的模型訓練組(Training set)及模型驗證組(validation set),以cox-regression的方式進行預測式的建立,並以向後式選取(backward selection)進行變數篩選。
模型驗證組除針對本研究所建立的模型進行模型比較外,亦進行已知UKPDS、RECODe等第二型糖尿病中風險預測式進行外部模型比較,以確立現有預測式的適用性。
研究結果
觀察期間共6,393名第二型糖尿病病人,共有59名發生中風。利用5,114名成大醫院第二型糖尿病病人訓練組風險預測式,最終模型中風預測模型的變數包含:年齡(age)、性別(sex)、抽菸(smoking)、心律不整病史(history of atrial fibrillation)、收縮壓(systolic blood pressure)以及總膽固醇(total cholesterol)、高密度膽固醇(high-density lipoprotein)、心血管病史(CVD)、降血壓藥物治療(anti-hypertensive treatment)、降膽固醇藥物治療(statins)、抗凝血劑(anti-coagulants)、糖化血色素(HbA1c)、腎功能(serum creatinine)、以及白蛋白-肌酐酸比值(albumin-creatinine ratio)、尿糖(urine glucose)、平均紅血球體積(mean corpuscular volume)、 平均紅血球血紅素濃度(mean corpuscular hemoglobin concentration)等;訓練組的中風風險預測式的預測能力c-statistics為0.7364,驗證組的預測能力為0.6237,優於UKPDS stroke risk equation 及RECODe stroke risk equation對於驗證組的c-statisitcs預測能力0.5757及0.5867;而net reclassification improvement則發現在不同的條件下新建立的模型優於或不劣於UKPDS及RECODe的風險預測式。
研究結論
糖尿病與中風因其高發病率、高致死率,成為全世界甚大的疾病負擔。比較目前常用的心血管病風險評估工具如一般族群的Framingham風險評估、針對第二型糖尿病的英國UKPDS風險評估,及較新利用Accord等前瞻性糖尿病研究資料建立的RECODe風險評估,發現CVD風險評估模型隨著風險因素的不斷發現而不斷完善,同時也存在不同程度的局限性。我國尚缺乏對CVD進行全面系統、綜合傳統風險因素和治療藥品的有效風險評估研究,因此藉由本研究提出將中風相關風險因子與治療藥品暴露等客觀參數運用到Stroke風險因素評估中,以期為我國疾病風險評估研究提供新的方向。
SUMMARY
Abstract: Objective To establish a stroke risk equation to evaluate the risks of stroke among Taiwanese type 2 diabetes population.
Methods A total of 6,393 type II diabetic people who underwent out-patient clinic at the National Cheng Kung University Hospital during Jan. 2011 and Dec. 2013 were enrolled in the study. These people were randomly divided into the training group (n=5,114, 80%) and testing group (n=1,279, 20%). Cox regression was used to construct a simple risk model among the training group by backward selection method, and risk classification was drawn up according to the prognostic index by p value <0.05. Internal validation was used to test the stability of the model in the testing group. Discriminatory ability was determined by the area under the ROC curve.
Results Altogether 59 new stroke cases were observed during follow-up period. The risk factors included age, sex, smoking, systolic blood pressure,CVD, statins, anti-coagulants, anti-hypertensive agents, HbA1c, total cholesterol, high-density lipoprotein, serum creatinine, albumin-creatinine ratio, urine glucose, mean corpuscular volume and mean corpuscular hemoglobin concentration. The estimated AUC for the model was 0.7364 in the training group and 0.6237 in the testing group. Conclusion We have constructed a risk model that could be useful for identifying individuals at high risk of stroke in type II diabetes population.
1. PowersAC. Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. In: KasperD, FauciA, HauserS, LongoD, JamesonJL, LoscalzoJ, eds. Harrison’s Principles of Internal Medicine, 19e. New York, NY: McGraw-Hill Education; 2015. http://accessmedicine.mhmedical.com/content.aspx?aid=1120816080.
2. GLOBAL REPORT ON DIABETES WHO Library Cataloguing-in-Publication Data. ISBN. 978:92-94. http://www.who.int/about/licensing/. Accessed May31, 2018.,
3. Introduction: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S1-S2. doi:10.2337/dc18-Sint01.
4. American Diabetes Association. Standards of medical care in diabetes--2012. Diabetes Care. 2012;35 Suppl 1(Supplement 1):S11-63. doi:10.2337/dc12-s011.
5. JiangY-D, ChangC-H, TaiT-Y, ChenJ-F. Incidence and prevalence rates of diabetes mellitus in Taiwan: Analysis of the 2000–2009 Nationwide Health Insurance database. J Formos Med Assoc. 2012;111(11):599-604. doi:10.1016/J.JFMA.2012.09.014.
6. IDF Western Pacific. https://www.idf.org/our-network/regions-members/western-pacific/members/114-taiwan.html. Accessed June17, 2018.
7. 統計處. 2.1-03_國人糖尿病血症之現況按性別及年齡. 統計處. August2016. https://dep.mohw.gov.tw/DOS/cp-1720-7326-113.html. Accessed May31, 2018.
8. 統計處. 105年國人死因統計結果. 統計處. June2017. https://www.mohw.gov.tw/cp-16-33598-1.html. Accessed June17, 2018.
9. PowersAC. Diabetes Mellitus: Complications. In: KasperD, FauciA, HauserS, LongoD, JamesonJL, LoscalzoJ, eds. Harrison’s Principles of Internal Medicine, 19e. New York, NY: McGraw-Hill Education; 2015. http://accessmedicine.mhmedical.com/content.aspx?aid=1120816327.
10. GroupTA to CCR in DS. Effects of Intensive Glucose Lowering in Type 2 Diabetes. N Engl J Med. 2008;358(24):2545-2559. doi:10.1056/NEJMoa0802743.
11. DuckworthW, AbrairaC, MoritzT, et al. Glucose Control and Vascular Complications in Veterans with Type 2 Diabetes. N Engl J Med. 2009;360(2):129-139. doi:10.1056/NEJMoa0808431.
12. GroupTAC. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2008;358(24):2560-2572. doi:10.1056/NEJMoa0802987.
13. GreggEW, LiY, WangJ, et al. Changes in Diabetes-Related Complications in the United States, 1990–2010. N Engl J Med. 2014;370(16):1514-1523. doi:10.1056/NEJMoa1310799.
14. TsengL-N, TsengY-H, JiangY-D, et al. Prevalence of hypertension and dyslipidemia and their associations with micro- and macrovascular diseases in patients with diabetes in Taiwan: An analysis of nationwide data for 2000–2009. J Formos Med Assoc. 2012;111(11):625-636. doi:10.1016/J.JFMA.2012.09.010.
15. American Stroke Association. Impact of Stroke (Stroke statistics). http://www.strokeassociation.org/STROKEORG/AboutStroke/Impact-of-Stroke-Stroke-statistics_UCM_310728_Article.jsp#.WxzIXYozaUl. Accessed June10, 2018.
16. SmithWS, JohnstonSC, HemphillJC. Cerebrovascular Diseases. In: KasperD, FauciA, HauserS, LongoD, JamesonJL, LoscalzoJ, eds. Harrison’s Principles of Internal Medicine, 19e. New York, NY: McGraw-Hill Education; 2015. http://accessmedicine.mhmedical.com/content.aspx?aid=1129104073.
17. BenjaminEJ, BlahaMJ, ChiuveSE, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135(10):e146-e603. doi:10.1161/CIR.0000000000000485.
18. AmarencoP, LavalléePC, Monteiro TavaresL, et al. Five-Year Risk of Stroke after TIA or Minor Ischemic Stroke. N Engl J Med. 2018;378(23):2182-2190. doi:10.1056/NEJMoa1802712.
19. 邱弘毅. 腦中風之現況與流行病學特徵. 台灣腦中風學會學會會訊. http://www.stroke.org.tw/newpaper/2008Sep/paper_2.asp. Published 2008. Accessed June10, 2018.
20. 許重義. 台北醫學大學文山區中風防治中心先驅性計畫 計畫編號:D0H94-HP-1113. 台北市; 2001.
21. 廖建彰 李采娟 林瑞雄 宋鴻樟. 2000年台灣腦中風發生率與盛行率的城鄉差異. 台灣衛誌. 2006;25(3):223. http://ntur.lib.ntu.edu.tw/bitstream/246246/160578/1/56.pdf. Accessed June11, 2018.
22. LeeH-C, ChangK-C, HuangY-C, et al. Readmission, mortality, and first-year medical costs after stroke. J Chinese Med Assoc. 2013;76(12):703-714. doi:10.1016/J.JCMA.2013.08.003.
23. ChenC-M, KeY-L. Predictors for total medical costs for acute hemorrhagic stroke patients transferred to the rehabilitation ward at a regional hospital in Taiwan. Top Stroke Rehabil. 2016;23(1):59-66. doi:10.1179/1945511915Y.0000000006.
24. 台灣腦中風學會. 缺血性腦中風的 抗血小板藥物治療指引 2016. 台灣腦中風學會. 台灣腦中風學會; 2016. http://www.stroke.org.tw/download/guideline/guideline_缺血性腦中風的抗血小板藥物治療指引_20160520.pdf. Accessed June15, 2018.
25. D’agostinoRB, WolfPA, BelangerAJ, KannelWB. Stroke Risk Profile: Adjustment for Antihypertensive Medication The Framingham Study. http://stroke.ahajournals.org/. Accessed July24, 2018.
26. ChienK-L, SuT-C, HsuH-C, et al. Constructing the Prediction Model for the Risk of Stroke in a Chinese Population Report From a Cohort Study in Taiwan. 2010. doi:10.1161/STROKEAHA.110.586222.
27. KothariV, StevensRJ, AdlerAI, et al. UKPDS 60: risk of stroke in type 2 diabetes estimated by the UK Prospective Diabetes Study risk engine. Stroke. 2002;33(7):1776-1781. http://www.ncbi.nlm.nih.gov/pubmed/12105351. Accessed July11, 2017.
28. BasuS, SussmanJB, BerkowitzSA, HaywardRA, YudkinJS. Development and validation of Risk Equations for Complications Of type 2 Diabetes (RECODe) using individual participant data from randomised trials. Lancet Diabetes Endocrinol. 2017;5(10):788-798. doi:10.1016/S2213-8587(17)30221-8.
29. 衛生福利部國民健康署. 衛生福利部國民健康署. 衛生福利部國民健康署. December2016. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1128&pid=1951. Accessed August30, 2018.
30. GroupTA to CCR in DS. Effects of Intensive Glucose Lowering in Type 2 Diabetes. N Engl J Med. 2008;358(24):2545-2559. doi:10.1056/NEJMoa0802743.
31. HatamianH, SaberiA, PourghasemM. The relationship between stroke mortality and red blood cell parameters. Iran J Neurol. 2014;13(4):237-240. http://www.ncbi.nlm.nih.gov/pubmed/25632337. Accessed July24, 2018.
32. MozosI. Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases. Biomed Res Int. 2015;2015:1-12. doi:10.1155/2015/682054.
33. LiN, ZhouH, TangQ. Red Blood Cell Distribution Width: A Novel Predictive Indicator for Cardiovascular and Cerebrovascular Diseases. Dis Markers. 2017;2017:7089493. doi:10.1155/2017/7089493.
34. DemirR, SaritemurM, AtisO, et al. Can we distinguish stroke and stroke mimics via red cell distribution width in young patients? Arch Med Sci. 2015;11(5):958-963. doi:10.5114/aoms.2014.40995.
35. Mayda-DomaçF, MısırlıH, YılmazM. Prognostic Role of Mean Platelet Volume and Platelet Count in Ischemic and Hemorrhagic Stroke. J Stroke Cerebrovasc Dis. 2010;19(1):66-72. doi:10.1016/j.jstrokecerebrovasdis.2009.03.003.
36. HeK, ShiJ-C, MaoX-M. Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients. Ther Clin Risk Manag. 2014;10:505-511. doi:10.2147/TCRM.S50362.
37. HolmanRR, ColemanRL, ChanJCN, et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(11):877-886. doi:10.1016/S2213-8587(17)30309-1.
38. GreenJB, BethelMA, ArmstrongPW, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373(3):232-242. doi:10.1056/NEJMoa1501352.
39. BasuS, SussmanJB, BerkowitzSA, et al. Validation of Risk Equations for Complications of Type 2 Diabetes (RECODe) Using Individual Participant Data From Diverse Longitudinal Cohorts in the U.S. Diabetes Care. 2018;41(3):586-595. doi:10.2337/dc17-2002.
40. LiT-C, WangH-C, LiC-I, et al. Establishment and validation of a prediction model for ischemic stroke risks in patients with type 2 diabetes. Diabetes Res Clin Pract. 2018;138:220-228. doi:10.1016/j.diabres.2018.01.034.