簡易檢索 / 詳目顯示

研究生: 陳逸謙
Chen, Yi-Chien
論文名稱: 電子束熔煉高純度鈷之數值模擬與實驗研究熱分析
Thermal Analysis of Numerical Simulation and Experimental Investigation for High Purity Cobalt Melted by Electron Beam
指導教授: 溫昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 數值模擬真空電子束熔煉馬蘭戈尼效應
外文關鍵詞: numerical simulation, electron beam melting, Marangoni effect, cobalt
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於科技隨時代之演進,為了因應半導體產業、熔煉工業的進步,必須使用高強度、高純度、物理穩定性高的材料。因此為了得到高品質的材料,熔煉過程中的金屬熔池溫度量測與控制成為重要的一環。
    本文利用數值模擬的方式,模擬真空電子束熔煉高純度鈷金屬,探討不同總熱傳係數、電子束半徑、電子束功率之下的熔池溫度、形狀、馬蘭戈尼效應所帶動的表面流動及內部流場流動。模擬之結果並與實驗量測之冷卻水相關數據,計算出邊界之總熱傳係數及透過測溫平板上之熱平衡方程式,進而推算純鈷金屬之表面溫度,進行比較與驗證。
    固定電子束半徑、能量,提高總熱傳係數時,熔池的寬度跟深度有明顯減小的趨勢。但是熔池寬度與深度減少的趨勢越來越小,表示總熱傳係數所帶走能量有限,對金屬熔池整體影響的程度有一定的限制。
    固定電子束半徑,增加電子束能量,因為單位能量密度增加,使得熔池溫度提高、熔池形狀變大,這兩者都會使表面之蒸發熱損失以及輻射熱損失提高,導致能量浪費。
    固定電子束能量,電子束半徑越小,單位能量密度越高,表面溫度梯度提高,造成馬蘭戈尼效應越強烈,並且會有局部過熱問題,導致蒸發熱損失提高,為了避免局部過熱,可以增加電子束半徑,降低熔池表面溫度,並且減少蒸發質量的損失。

    In view of the evolution of science and technology with times and in response to the progress of semiconductor and smelting industries, it must use high-strength, high-purity, high physical stability of the material. Therefore, in order to obtain high-quality materials, molten pool temperature measurement and control becomes important issue in melting process. In this study, numerical approach is used to simulate vacuum electron beam melting high purity cobalt metal and investigate the flow and heat transfer characteristics of the molten pool. This model also considers the coupled effects of buoyancy and Marangoni forces, radiation, and evaporation losses. The results of the simulation are compare and verified with the overall heat transfer coefficient which is derived from the experimental data of the cooling water, and the surface temperature of the pure cobalt metal which is measured by plate thermometer. The results show that the width and depth of molten pool significantly decreases with increasing overall heat transfer coefficient. Increasing the electron beam power will cause the molten pool to have higher temperature and larger shape, which both result in higher evaporation heat loss and radiation heat loss. Decreasing the electron beam radius, the molten pool surface temperature gradient will increase and cause overheating problem in the center. Therefore, larger beam radius can produce larger molten pool surface area, efficiently avoid overheating, and effectively decrease evaporation loss of the base material.

    目錄 摘要 I 誌謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 符號說明 XX 第1章 緒論 1 1-1 研究背景和動機 1 1-1.1 冶金背景 1 1-1.2 真空熔煉 1 1-1.3 不同的真空熔煉技術 2 1-2 文獻回顧 7 1-3 研究目的 14 1-4 全文架構 17 第2章 理論基礎 18 2-1 電子束加工裝置 18 2-2 電子槍介紹 18 2-2.1 熱游離電子槍 18 2-2.2 熱游離電子槍 20 2-3 電子束運作原理 20 2-3.1 電子束加熱原理 22 2-3.2 電子束能量之損耗 24 2-4 數值模擬金屬熔池 27 2-4.1 電子束能量變化 27 2-4.2 相變化 28 2-4.3 表面張力 31 2-4.4 熱輻射 32 2-4.5 蒸發 32 第3章 數值模擬方法 34 3-1 物理模型 34 3-1.1 網格架構 36 3-1.2 網格測試 36 3-1.3 時間步伐測試 39 3-2 數值方法 44 3-3 統御方程式 46 3-3.1 邊界條件 47 3-3.2 初始條件 50 3-4 金屬材料性質 51 3-4.1 金屬材料熱物理性質 51 3-4.2 純鈷金屬 51 3-5 總熱傳係數 56 3-6 熱傳量定義 59 3-7 數值模擬求解流程 60 第4章 結果與討論 63 4-1 驗證 63 4-1.1 驗證一 63 4-1.2 驗證二 67 4-2 純鈷金屬模擬與實驗對照 67 4-2.1 數值模擬改變總熱傳係數之分析 70 4-2.2 模擬與實驗之熱分析 73 4-3 純鈷金屬之熱流分析 79 4-4 改變熔煉參數對鈷金屬之影響 88 4-4.1 改變電子束功率影響 88 4-4.2 改變電子束半徑影響 95 第5章 結論與未來工作 101 5-1 結論 101 5-2 未來工作 102 參考文獻 103

    參考文獻
    1.楊邦朝,崔紅玲,“濺射靶材的制備與應用,”Vacuum, number. 3, pp. 11-15, 2001.
    2.伍秀菁,汪若文,林美吟, “真空技術與應用,”行政院國家科學委員會精密儀器發展中心, 2001.
    3.劉喜海, 徐成海, 鄭險峰, “真空熔煉,” 化學工業出版社, pp. 196-233, 2013.
    4.J. P. Bellot, D. Ablitzer, and E. Hess, "Aluminum volatilization and inclusion removal in the electron beam cold hearth melting of Ti alloys," Metallurgical and Materials Transactions B, Vol. 31, pp. 845-854, 2000.
    5.A. Powell, U. Pal, J. Van Den Avyle, B. Damkroger, and J. Szekely, "Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys," Metallurgical and Materials Transactions B, Vol. 28B, pp. 1227-1239, 1997.
    6.Yi. Tan, S. Wen, S. Shi, D. Jiang, W. Dong, and X. Guo, “Numerical simulation for parameter optimization of silicon purification by electron beam melting,” Vacuum, Vol. 95, pp. 18-24, 2013.
    7.T. L. Bergman, and B. W. Webb, “Simulation of pure metal melting with buoyancy and surface tension forces in the liquid phase,” Vol. 33, No. 1, pp. 13-49, 1990.
    8.J. C. Chen, and Y. C. Huang, “Thermocapillary flows of surface melting due to a moving heat flux,” Vol. 34, number. 3, pp. 663-671, 1990.
    9.K. W. Westerberg, M. A. McClelland, and B. A. Finlayson, “Numerical Simulation of Material and Energy Flow in an E-Beam Melt Furnace,” 1993.
    10.K. Vutova, V. Vassileva, and G. Mladenov, “Simulation of the heat transfer process through treated metal, melted in a water-cooled crucible by an electron beam,” Vacuum, Vol. 48, number 2, pp. 143-148, 1997.
    11.P. D. Lee, P. N. Quested, and M. McLean, “Modelling of Marangoni effects in electron beam melting,” Philosophical Transactions of the Royal Society A, Vol. 356, pp. 1027-1043, 1998.
    12.K. Vutova, and G. Mladenov, “Computer simulation of the heat transfer during electron beam melting and refining,” Vacuum, Vol 53, pp. 87-91, 1999.
    13.K. I. Suzuki, and S. Watakabe, "Melting and precision casting of Ti-6Al-4V alloy by use of electron beam furnace," Metals and Materials International, Vol. 9, pp. 359-367, 2003.
    14.羅雷, 毛小南, 雷文光, 于蘭蘭, 楊冠軍 “電子束冷床熔煉TC4合金溫度場模擬,” The Chinese Journal of Nonferrous Metals, Vol. 20, Special. 1, 2010.
    15.K. Vutova, V. Vassileva, E. Koleva, E. Georgieva, G. Mladenov, D. Mollov, and M., “Investigation of electron beam melting and refining of titanium and tantalum scrap,” Journal of Materials Processing Technology, pp.1089–1094, 2010.
    16.http://www.mse.ttu.edu.tw/ezfiles/63/1063/img/647/187523438.pdf電子槍結構
    17.D. W. Tripp, “Modelling power transfer in electron beam heating of cylinders,” PhD Thesis, The University of British Columbia, Vancouver, 1994.
    18.Z. Zhang, “Modeling of Al evaporation and Marangoni Flow in electron beam button melting of Ti-6Al-4V,” Master’s Thesis, The University of British Columbia, Vancouver, 2013.
    19.I. Utke, P. Hoffmann, and J. Melngailis, “Gas-assisted focused electron beam and ion beam processing and fabrication,” Journal of Vacuum Science & Technology B, Vol. 26, pp. 197-1276, 2008.
    20.O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, and G. Vieira, “Melting driven by natural convection A comparison exercise: first results,” International Journal of Thermal sciences, Vol. 38, pp. 5-26, 1999.
    21.ANSYS, “Ansys Fluent. 14.0 User's Manual,” ANSYS inc, 2011.
    22.V. R. Voller, and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer, Vol. 30, pp. 1709-1719, 1987.
    23.M. Ritchie, P. D. Lee, A. Mitchell, S. L. Cockcroft, and T. Wang, “X-ray-based measurement of composition during electron beam melting of AISI 316 stainless steel: Part II. Evaporative processes and simulation,” Metallurgical and Materials Transactions A, Vol. 34, pp. 863-877, 2003.
    24.Y. P. Lei, H. Murakawa, Y. W. Shi, and X. Y. Li, “Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting,” Computational Materials Science, Vol. 21, pp. 276-290, 2001.
    25.J. Srinivasan, and B. Basu, “A numerical study of thermocapillary flow in a rectangular cavity during laser melting,” International journal of heat and mass transfer, Vol. 29, pp. 563-572, 1986.
    26.K. C. Mills, “Recommended values of thermophysical properties for selected commercial alloys,” Woodhead Publishing, 2002.
    27.M. W. Chase, “NIST-JANAF thermochemical tables,” 1998.
    28.C. L. Yaws, “Handbook of properties of the chemical elements,” Norwich, N.Y. : Knovel, c2011., 2011.
    29.R. W. Powell, and P. E. Liley, "Thermal conductivity of the elements: A comprehensive review," Journal of Physical and Chemical Reference Data, Vol. 3, pp. I–1 to I–796, 1974.
    30.P. F. Paradis, T. Ishikawa, and S. Yoda, “Surface tension and viscosity of liquid and undercooled tantalum measured by a containerless method,” Journal of applied physics, Vol. 97, 053506, 2005.
    31.R. Rai, J. W. Elmer, T. A. Palmer, and T. DebRoy, “Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium,” Journal of physics D: Applied physics, Vol. 40, 5753, 2007.
    32.E. R. Cohen, D. R. Lide, and G. L. Trigg, editors., “AlP physics desk reference, 3rd edition,” New York Springer-Verlag New York, Inc., 2003.
    33.J. W. Edwards, H. L. Johnston, and P. E. Blackburn, “Vapor pressure of inorganic substances. IV. tantalum between 2624 and 2943° K. 1,” Journal of the American Chemical Society, Vol. 73, pp. 172-174, 1951.
    34.J. W. Edwards, H. L. Johnston, and W. E. Ditmars, “The vapor pressures of inorganic substances. VII. iron between 1356° K. and 1519° K. and cobalt between 1363° K. and 1522° K 1.,” Journal of the American Chemical Society, Vol. 73, pp. 4729-4732,1951.
    35.M. J. Assael, I. J. Armyra, J. Brillo, S. V. Stankus, J. Wu, and W. A. Wakeham, “Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc.” Journal of Physical and Chemical Reference Data, Vol. 41, 033101, 2012.
    36.C. W. Tsai, “Application of Plate Thermometer to Measure Ultra-high Surface Temperature of High Purity Metals Melted by Electron Beam,” 2015

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE