簡易檢索 / 詳目顯示

研究生: 茅思萱
Mao, Szu-Hsuan
論文名稱: 以LC3探討在點帶石斑魚處於緊迫環境下的自噬作用特性分析
Characterization of autophagy by LC3 under stress condition in orangespotted grouper (Epinephelus coioides)
指導教授: 陳宗嶽
Chen, Tzong-Yueh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 125
中文關鍵詞: LC3自噬作用緊迫環境神經壞死病毒高溫環境
外文關鍵詞: LC3, autophagy, condition of stress, NNV, high temperature
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石斑魚是亞洲具經濟價值的水產養魚種之一。然而,隨著石斑魚的成 長他們可能面對環境中的各種緊迫,像是感染神經壞死病毒、氣候變遷及 鹽濃度的變化。自噬作用被生物作為對抗緊迫環境的防禦策略,此機制為 重要細胞內負責降解及循環胞器和蛋白的途徑之一。而微管相關蛋白1 輕 鏈3(LC3)為是自噬體的組成成分之一,並被作為自噬作用的可靠標記 物。然而,對於自噬作用與緊迫的調節在點帶石斑魚中還是未知的。因此, 在本研究以LC3 作為標記物來探討石斑魚中被緊迫所誘發的自噬作用在 不同刺激物下的反應。osgLC3 全長為1440 鹼基對,可以被轉譯出126 個 胺基酸。從即時聚合酶鏈式反應分析,osgLC3 的表現在點帶石斑魚的每 個測試組織中具有高表現。此外,結果顯示osgLC3 對溫度變化、鹽度變 化和免疫刺激有反應。另外,在自然感染NNV 點帶石斑幼魚,在神經系 統腦和眼睛osgLC3 表現比控制組高約十倍。總結這些研究結果是利用 osgLC3 證明了自噬作用和緊迫環境間的相互作用。最後,這項研究說明 當石斑魚面臨環境壓力會誘導自噬作用,可能有助於生物適應環境變化, 藉由通過破壞受損的胞器和蛋白質或病毒蛋白來維持細胞平衡。

    Groupers are one of the most remunerative aquaculture species in Asia. However, as groupers grow up, there are various stress conditions that they might face, such as nervous necrosis virus (NNV) infection, salinity changes and climate changes. Autophagy is used by organisms as a defense strategy against environmental stress. The mechanism is one of the most important intracellular pathways responsible for the degradation and recycling of organelles and proteins. Microtubule-associated protein light chain 3 (LC3) is one of the constituents of the autophagosome and utilized as a reliable marker for autophagy. However, the stress-regulating function of autophagy is still not yet known in orange-spotted groupers. In this study, investigating stress-induced autophagy by the LC3 marker in grouper in response to different stimulations. The full-length sequence of orange-spotted grouper LC3 (osgLC3) gene had been cloned with 1,440 bp that can be translated to 126 amino acid sequences. From the qPCR analysis, it showed that osgLC3 had high basal expression levels in every tested tissue from orange-spotted groupers. In addition, the results showed that osgLC3 were response to temperature changes, salinity change, and immune stimulations. Besides, in naturally NNV-infected orange-spotted grouper larvae showed that the high expression level of osgLC3 about 10-fold in nervous system-brain and eye compared with control group. Taken together, these studies demonstrated that the interaction between autophagy and stress condition confirmed by osgLC3. Eventually, this study suggested that when groupers faced environmental stress and induced autophagy may be helpful to adapt to environmental changes that keeps up cellular homeostasis by destructive of damaged organelles and proteins or viral proteins.

    Chinese Abstract (中文摘要)....................... I Abstract........................................ II Acknowledgements................................ VI Table of Contents.............................. VII Contents of Tables............................. XII Contents of Figures........................... XIII Contents of Appendices......................... XVI Abbreviation List............................. XVII 1. Research Background...................... 1 1-1 Autophagy................................ 1 1-2 Autophagosome formation.................. 2 1-3 LC3...................................... 3 1-4 Degradation and recycling................ 4 1-5 Autophagy as a stress defense mechanism.. 6 1-6 Interaction between autophagy and heat shock response during heat stress.............. 8 1-7 Salinity stress challenges inducing autophagy ......................................... 9 1-8 Autophagy and virus..................... 11 1-9 Problem in ocean and molecular defense strategies against stress in aquatic organisms..... 13 1-10 Autophagy studies on fishes............. 14 1-11 The current situation of grouper aquaculture industry................................ 16 1-12 Research objectives..................... 17 2. Materials and Methods................... 19 2-1 Fish samples and challenge experiments............................. 19 2-2 Rapamycin treatment..................... 19 2-3 Immune stimulant challenge.............. 20 2-4 NNV challenge........................... 20 2-5 Temperature treatment................... 21 2-6 Salinity challenge...................... 22 2-7 RNA extraction.......................... 22 2-8 RNA electrophoresis analysis............ 23 2-9 Reverse transcription................... 24 2-10 Quantitative real-time PCR analysis................................ 25 2-11 DNA electrophoresis analysis............ 26 2-12 Competent cells preparation............. 26 2-13 Transformation.......................... 27 2-14 Mini-prepared plasmid extraction........ 28 2-15 Expression of osgLC3 recombinant protein ........................................ 28 2-16 Purification of osgLC3 recombinant protein ........................................ 29 2-17 SDS-PAGE electrophoresis................ 30 2-18 Rabbit immunization..................... 31 2-19 Total protein extraction from tissues... 32 2-20 Western blotting........................ 32 2-21 Statistical analysis of qPCR results.... 33 2-22 Frozen section preparation.............. 34 2-23 Hematoxylin and eosin stain (H and E stain) ........................................ 34 2-24 Immunochemistry staining (IHC staining). 35 2-25 Cell culture............................ 36 2-26 Immunofluorescence staining............. 38 3. Results................................. 40 3-1 Tissue distribution and transcription pattern of osgLC3.................................. 40 3-2 Immunological subcellular localization of endogenous LC3 in different rapamycin treatment in vitro................................ 40 3-3 The expression of osgLC3 in response to rapamycin treatment in vivo....................... 41 3-4 Expression of osgLC3 in response to salinity change.................................. 42 3-5 The effect of temperature on subcellular localization of endogenous LC3.......... 43 3-6 The expression pattern of osgLC3 on grouper larvae after temperature shock.......... 43 3-7 Immunological subcellular localization of LC3 in Poly I:C induced in vitro............... 44 3-8 Expression of osgLC3 in response to viral mimic poly I:C stimulation.................... 45 3-9 Immunological subcellular localization of LC3 in LPS induced in vitro............................ 45 3-10 Expression of osgLC3 in response to LPS (lipopolysaccharides) stimulation............... 46 3-11 Infection of NNV enhance endogenous LC3 in vitro ........................................ 46 3-12 Expression of osgLC3 in naturally NNV-infected grouper larva........................... 47 4. Discussion.............................. 49 4-1 Basal expression of osgLC3 in different tissues under normal condition in orange-spotted grouper ........................................ 49 4-2 The effect of rapamycin on grouper................................. 49 4-3 The effect of salinity change on grouper larvae ........................................ 50 4-4 The effect of temperature on grouper larvae ........................................ 52 4-5 Autophagy and immune stimulant challenge ........................................ 53 4-6 The effect of naturally NNV-infected on grouper larvae.................................. 54 4-7 Conclusion.............................. 55 References...................................... 57 Tables.......................................... 79 Figures......................................... 86 Appendices..................................... 122

    Alfred, J. M., and Dubbelhuis, P.F. Amino acid signaling and the integration of metabolism. Biochemical and Biophysical Research Communications 313, 397-403, 2004.

    Amano, A., Nakagawa, I., and Yoshimori, T. Autophagy in innate immunity against intracellular bacteria. Journal of Biochemistry 140, 161-166, 2006.

    Anding, A. L., and Baehrecke, E. H. Cleaning house: selective autophagy of organelles. Developmental Cell 41, 10-22, 2017.

    Andrade, R. M., Wessendarp, M., Gubbels, M. J., Striepen, B., and Subauste, C. S. CD40 induces macrophage anti–Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. The Journal of Clinical Investigation 116, 2366-2377, 2006.

    Arbuckle, J. L. Statistical Program for Social Sciences. Amos 23.0 User’s Guide, IBM SPSS,
    Chicago, 2014.

    Ashton, K., Ashton, L., and Holmes, T. Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin 60, 2050-2055, 2010.

    Baehrecke, E. H. Autophagic programmed cell death in Drosophila. Cell Death and Differentiation 10, 940-945, 2003.

    Bakir, A., Rowland, S. J., and Thompson R. C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin 64, 2782-2789, 2012.

    Berg, T. O., Fengsrud, M., Stromhaug, P. E., Berg, T., and Seglen, P. O. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. The Journal of Biological Chemistry 273, 21883-21892, 1998.

    Bernard, A., and Klionsky, D. J. Toward an understanding of autophagosome-lysosome fusion: The unsuspected role of ATG14. Autophagy 11, 583-584, 2015.

    Boeuf, G., and Payan, P. How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 130, 411-423, 2001.

    Bombeo-Tuburan, I., Coniza, E. B., Rodriguez, E. M., and Agbayani, R. F. Culture and economics of wild grouper (Epinephelus coioides) using three feed types in ponds. Aquaculture 201, 229-240, 2001.

    Braid, H.E., Deeds, J., DeGrasse, S.L., Wilson, J. J., Osborne, J., and Hanner, R.H. Preying on commercial fisheries and accumulating paralytic shellfish toxins: a dietary analysis of invasive Dosidicus gigas (Cephalopoda Ommastrephidae) stranded in Pacific Canada Marine Biology 159, 25-31, 2012.

    Brokstad, K. A. The 2016 Nobel Prize in Physiology or Medicine. Scandinavian Journal of Immunology 84, 316-316, 2016.

    Brownstein, A. J., Ganesan, S., Summers, C. M., Pearce, S., Hale, B. J., Ross, J. W., Gabler, N., Seibert, J. T, Rhoads, R. P., Baumgard, L. H., and Selsby, J. T. Heat stress causes dysfunctional autophagy in oxidative skeletal muscle. Physiological Reports 5, e13317, 2017.

    Bursch, W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death and Differentiation 8, 569-581, 2001.

    Cai, Z., Zhao, B., Li, K., Zhang, L., Li, C., Quazi, S. H., and Tan, Y. Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer's disease? Journal of Neuroscience Research 90, 1105-1118, 2012.

    Chen, N. C., Yoshimura, M., Guan, H. H., Wang, T. Y., Misumi, Y., Lin, C. C., Chuankhayan, P., Nakagawa, A., Chan, S. I., Tsukihara, T., Chen, T. Y., and Chen, C. J. Crystal structures of a piscine betanodavirus: mechanisms of capsid assembly and viral infection. PLoS Pathogens 11, e1005203, 2015.

    Chen, X., Tian, D., Kong, X., Chen, Q., Abd_Allah, E. F., Hu, X., and Jia, A. The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta 244, 651-669, 2016.

    Chen, Y. M., Su, Y. L., Lin, J. H., Yang, H. L., and Chen, T. Y. Cloning of an orange-spotted grouper (Epinephelus coioides) Mx cDNA and characterisation of its expression in response
    to nodavirus. Fish and Shellfish Immunology 20, 58-71, 2006.

    Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R. E. G., Zeller, D., and Pauly, D. Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology 16, 24-35, 2010.

    Chong, Z. Z., Shang, Y. C., Zhang, L., Wang, S., and Maiese, K. Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. Oxidative Medicine and Cellular Longevity 3, 374-391, 2010.

    Chua, C. S. Molecular characterization of autophagy marker LC3 in orange-spotted grouper (Epinephelus coioides). Master thesis. Retrieved from National Cheng Kung University of Institute of Biotechnology. 2013.

    Cuervo, A.M. Autophagy and aging-when “all you can eat” is yourself. Science of Aging Knowledge Environment 36, 25, 2003.

    Chi, S. C., Lo, C. F., Kou, G. H., Chang, P. S., Peng, S. E., and Chen, S. N. Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery-reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck and Schlegel). Journal of Fish Diseases 20, 185-193, 1997.

    Chi, S. C., Hu, W. W., and Lo, B. J. Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). Journal of Fish Diseases 22, 173-182, 1999.

    Chiarelli, R., and Roccheri, M. C. Heavy metals and metalloids as autophagy inducing agents: focus on cadmium and arsenic. Cells 1, 597- 616, 2012.

    Chiramel, A. I., Brady, N. R., and Bartenschlager, R. Divergent roles of Autophagy in virus infection. Cells 2, 83-104, 2013.

    Crane, M., and Hyatt, A. Viruses of fish: an overview of significant pathogens. Viruses 3, 2025-2046, 2011.

    Dai, W., Panserat, S., Terrier, F., Seiliez, I., and Skiba-Cassy, S. Acute rapamycin treatment improved glucose tolerance through inhibition of hepatic gluconeogenesis in rainbow trout (Oncorhynchus mykiss). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 307, R1231-R1238, 2014.

    Das, G., Shravage, B. V., and Baehrecke, E. H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harbor Perspectives in Biology 4, a008813, 2012.

    Das, R., Melo, J. A., Thondamal, M., Morton, E. A., Cornwell, A. B., Crick, B., Kim, H. J., Elliot, W., Lamitina, S., Douglas, T., Peter, M., and Samuelson, A. V. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans. PLoS Genetics 13, e1007038, 2017.

    Deretic, V. Autophagy as an immune defense mechanism. Current Opinion in Immunology 18, 375-382, 2006.

    Dittmar, J., Janssen, H., Kuske, A., Kurtz, J., and Scharsack, J. P. Heat and immunity: an
    experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus
    aculeatus). Journal of Animal Ecology 83, 744-757, 2014.

    Dixon, P. F., Smail, D. A., Algoet, M., Hastings, T. S., Bayley, A., Byrne, H., Dodge, M., Garden, A., Joiner, C., Roberts, E., Verner‐Jeffreys, D., Thompson, F., and Verner‐Jeffreys, D. Studies on the effect of temperature and pH on the inactivation of fish viral and bacterial pathogens. Journal of Fish Diseases 35, 51-64, 2012.

    Duarte, C. M., Marbá, N., and Holmer, M. Rapid domestication of marine species. Science
    316, 382-383, 2007.

    do Sul, J. A. I., and Costa, M. F. The present and future of microplastic pollution in the marine environment. Environmental Pollution 185, 352-364, 2014.

    Dokladny, K., Myers, O. B., and Moseley, P. L. Heat shock response and autophagy-cooperation and control. Autophagy 11, 200-213, 2015.

    Dooley, H. C., Razi, M., Polson, H. E., Girardin, S. E., Wilson, M. I., and Tooze, S. A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1.Molecular Cell 55, 238-252, 2014.

    Dorn, B. R., Dunn, W. A., and Progulske‐Fox, A. Bacterial interactions with the autophagic pathway. Cellular Microbiology 4, 1-10, 2002.

    Dowling, J. J., Low, S. E., Busta, A. S., and Feldman, E. L. Zebrafish MTMR14 is required for excitation–contraction coupling, developmental motor function and the regulation of autophagy. Human Molecular Genetics 19, 2668-2681, 2010.

    Dreux, M., Gastaminza, P., Wieland, S. F., and Chisari, F. V. The autophagy machinery is required to initiate hepatitis C virus replication. Proceedings of the National Academy of Sciences of the United States of America 106, 14046-14051, 2009.

    Eddy, F. B. Osmotic and ionic regulation in captive fish with particular reference to salmonds. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 73, 125-141, 1982.

    Edinger, A. L., and Thompson, C. B. Defective autophagy leads to cancer. Cancer Cell 4, 422-424, 2003.

    El-Chaar, D., Gagnon, A., and Sorisky, A. Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. International Journal of Obesity 28, 191-198, 2004.

    Ellis, J. L., Bove, K. E., Schuetz, E. G., Leino, D., Valencia, C. A., Schuetz, J. D., Miethke A and Yin, C. Zebrafish abcb11b mutant reveals strategies to restore bile excretion impaired by bile salt export pump deficiency. Hepatology 67, 1531-1545, 2018.

    Eskelinen, E. L. Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1, 1-10, 2005.

    Eskelinen, E. L., and Saftig, P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1793, 664-673, 2009.

    Evans, S. S., Repasky, E. A., and Fisher, D. T. Fever and the thermal regulation of immunity:
    the immune system feels the heat. Nature Reviews Immunology 15, 335-349, 2015.

    Feder, M. E., and Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology 61, 243-282, 1999.

    Floto, R. A., Sarkar, S., Perlstein, E. O., Kampmann, B., Schreiber, S. L., and Rubinsztein, D. C. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington’s disease models and enhance killing of mycobacteria by macrophages. Autophagy 3, 620-622, 2007.

    Gadelha, C. G., de Souza Miranda, R., Alencar, N. L. M., Costa, J. H., Prisco, J. T., and Gomes-Filho, E. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. Journal of Plant Physiology 212, 69-79, 2017.

    Gallagher, L. E., Radhi, O. A., Abdullah, M. O., McCluskey, A. G., Boyd, M., and Chan, E. Y. Lysosomotropism depends on glucose: a chloroquine resistance mechanism. Cell Death and Disease 8, e3014, 2017.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. Effects of size
    and temperature on metabolic rate. Science 293, 2248-2251, 2001.

    Glick, D., Barth, S., and Macleod, K. F. Autophagy: cellular and molecular mechanisms. The Journal of Pathology 221, 3-12, 2010.

    Gordon, P. B., Kovacs, A. L., and Seglen, P. O. Temperature dependence of protein degradation, autophagic sequestration and mitochondrial sugar uptake in rat hepatocytes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 929, 128-133, 1987.

    Hamdoun, A., and Epel, D. Embryo stability and vulnerability in an always changing world. Proceedings of the National Academy of Sciences of the United States of America 104, 1745-1750, 2007.

    Hameed, A. S., Yoganandhan, K., Widada, J. S., and Bonami, J. R. Studies on the occurrence of Macrobrachium rosenbergii nodavirus and extra small virus-like particles associated with white tail disease of M. rosenbergii in India by RT-PCR detection. Aquaculture 238, 127-133, 2004.

    Han, J., Xu, X., Qin, H., Liu, A., Fan, Z., Kang, L., Fu, J., Liu, J., and Ye, Q. The molecular mechanism and potential role of heat shock-induced p53 protein accumulation. Molecular and Cellular Biochemistry 378, 161-169, 2013.

    Harikrishnan, R., Balasundaram, C., and Heo, M. S. Fish health aspects in grouper aquaculture. Aquaculture 320, 1-21, 2011.

    Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., and Pahor, M. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395, 2009.

    Hasday, J. D., and Singh, I. S. Fever and the heat shock response: distinct, partially
    overlapping processes. Cell Stress Chaperones 5, 471-480, 2000.

    Hasegawa, J., Iwamoto, R., Otomo, T., Nezu, A., Hamasaki, M., and Yoshimori, T. Autophagosome–lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome. The European Molecular Biology Organization Journal 35, 1853-1867, 2016.

    He, C., Bartholomew, C. R., Zhou, W., and Klionsky, D. J. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 5, 520-526, 2009.

    He, C., and Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics 43, 67-93, 2009.

    Heaton, N. S., and Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host and Microbe 8, 422-432, 2010.

    Heemstra, P. C., and Randall, J. E. Grouper of the world. Food and Agriculture Organization Fisheries Synopsis 16, 124-132, 1993.

    Heuer, M., Dreger, N. M., Cicinnati, V. R., Fingas, C., Juntermanns, B., Paul, A., and Kaiser, G. M. Tumor growth effects of rapamycin on human biliary tract cancer cells. European Journal of Medical Research 17, 20, 2012.

    Hewitt, G., and Korolchuk, V. I. Repair, reuse, recycle: the expanding role of autophagy in genome maintenance. Trends in Cell Biology 27, 340-351, 2017.

    Hossain, M. S., Chakraborty, A., Joseph, B., Otta, S. K., Karunasagar, I., and Karunasagar, I. Detection of new hosts for white spot syndrome virus of shrimp using nested polymerase chain reaction. Aquaculture 198, 1-11, 2001.

    Hsu, S. F., Chao, C. M., Huang, W. T., Lin, M. T., and Cheng, B. C. Attenuating heat-induced cellular autophagy, apoptosis and damage in H9c2 cardiomyocytes by pre-inducing HSP70 with heat shock preconditioning. International Journal of Hyperthermia 29, 239-247, 2013.

    Hu, Z., Zhang, J., and Zhang, Q. Expression pattern and functions of autophagy-related gene atg5 in zebrafish organogenesis. Autophagy 7, 1514-1527, 2011.

    Huang, R., and Liu, W. Identifying an essential role of nuclear LC3 for autophagy. Autophagy 11, 852-853, 2015.

    Huntington, T. G. Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology 319, 83-95, 2006.

    Huang, S. M., Cheng, J. H., Tu, C., Chen, T. I., Lin, C. T., and Chang, S. K. A bivalent inactivated vaccine of viral nervous necrosis virus and grouper iridovirus applied to grouper broodfish (Epinephelus coioides) reduces the risk of vertical transmission. Taiwan Veterinary Journal 43, 171-176, 2017.

    Huang, Y., Huang, X., Cai, J., OuYang, Z., Wei, S., Wei, J., and Qin, Q. Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus. Fish and Shellfish Immunology 42, 345-352, 2015.

    Jheng, J. R., Ho, J. Y., and Horng, J. T. ER stress, autophagy, and RNA viruses. Frontiers in Microbiology 5, 388, 2014.

    Jiang, P., and Mizushima, N. LC3-and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75, 13-18, 2015.

    Jiang, J., Jiang, J., Zuo, Y., and Gu, Z. Rapamycin protects the mitochondria against oxidative stress and apoptosis in a rat model of Parkinson's disease. International Journal of Molecular Medicine 31, 825-832, 2013.

    Jones, T. J., Li, D., Wolf, I. M., Wadekar, S. A., Periyasamy, S., and Sánchez, E. R. Enhancement of glucocorticoid receptor-mediated gene expression by constitutively active heat shock factor 1. Molecular Endocrinology 18, 509-520, 2004.

    Kanno, H., Ozawa, H., Sekiguchi, A., Yamaya, S., Tateda, S., Yahata, K., and Itoi, E. The role of mTOR signaling pathway in spinal cord injury. Cell Cycle 11, 3175-3179, 2012.

    Kaushik, S., and Cuervo, A. M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends in Cell Biology 22, 407-417, 2012.

    Kemp, M. G. Crosstalk between apoptosis and autophagy: environmental genotoxins, infection, and innate immunity. Journal of Cell Death 10, 1179670716685085, 2017.

    Kim, J., Huang, W. P., and Klionsky, D. J. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and autophagy conjugation complex. The Journal of Cell Biology 152, 51-64, 2001.

    Kim, J. E., and Chen, J. Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53, 2748-2756, 2004.

    Kim, S. H., Kwon, C., Lee, J. H., and Chung, T. Genes for plant autophagy: functions and interactions. Molecules and Cells 34, 413-423, 2012.

    Kimura, S., Noda, T., and Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460, 2007.

    King, J. S., Veltman, D. M., and Insall, R. H. The induction of autophagy by mechanical stress. Autophagy 7, 1490-1499, 2011.

    Klionsky, D. J., and Ohsumi, Y. Vacuolar import of proteins and organelles from the cytoplasm. Annual Review of Cell and Developmental Biology 15, 1-32, 1999.

    Klionsky, D. J., Abeliovich, H., Agostinis, P., Agrawal, D.K., Aliev, G., Askew, D.S., Baba, M., Baehrecke, E.H., Bahr, A., and Ballabio, A. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175, 2008.

    Klionsky, D. J., Cregg, J. M., Dunn Jr., W. A., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., and Veenhuis, M. A unified nomenclature for yeast autophagy-related genes. Developmental Cell 5, 539-545, 2003.

    Kuma, A., Matsui, M., and Mizushima, N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3, 323-328, 2007.

    Kumsta, C., and Hansen, M. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy. Autophagy 13, 1076-1077, 2017.

    Komoroske, L. M., Jeffries, K. M., Connon, R. E., Dexter, J., Hasenbein, M., Verhille, C., and Fangue, N. A. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evolutionary Applications 9, 963-981, 2016.

    Kourtis, N., and Tavernarakis, N. Cellular stress response pathways and ageing: intricate molecular relationships. The European Molecular Biology Organization Journal 30, 2520-2531, 2011.

    Koyama-Honda, I., Tsuboyama, K., and Mizushima, N. ATG conjugation-dependent degradation of the inner autophagosomal membrane is a key step for autophagosome maturation. Autophagy 13, 1252-1253, 2017.

    Kroemer, G., and Levine B. Autophagic cell death: the story of a misnomer. Nature Reviews Molecular Cell Biology 9, 1004-1010, 2008.

    Kroemer, G., Marino, G., and Levine, B. Autophagy and the integrated stress response. Molecular Cell 40, 280-293, 2010.

    Kültz, D. Physiological mechanisms used by fish to cope with salinity stress. Journal of Experimental Biology 218, 1907-1914, 2015.

    Kuo, H. C., Wang, T. Y., Chen, P. P., Chen, Y. M., Chuang, H. C., and Chen, T. Y. Real-time quantitative PCR assay for monitoring of nervous necrosis virus infection in grouper aquaculture. Journal of Clinical Microbiology 49, 1090-1096, 2011.

    Larsson, Å., and Lewander, K. Metabolic effects of starvation in the eel, Anguilla anguilla L. Comparative Biochemistry and Physiology. Part A. Molecular and Integrative Physiology 44, 367-374, 1973.

    Leclere, L., Fransolet, M., Cote, F., Cambier, P., Arnould, T., Van Cutsem, P., and Michiels, C. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS One 10, e0115831, 2015.

    Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N., and Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398-1401, 2007.

    Li, F., and Vierstra, R. D. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science 17, 526-537, 2012.

    Li, S. The possible cellular mechanism for extending lifespan of mice with rapamycin. Biological Procedures Online 11, 1-2, 2009.

    Liang, Q., Luo, Z., Zeng, J., Chen, W., Foo, S. S., Lee, S. A., Ge, J., Wang, S., Steven, A. G., Berislav, V. Z., and Zhao, Z. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19, 663-671, 2016.

    Lightner, D. V., Hasson, K. W., White, B. L., and Redman, R. M. Experimental infection of western hemisphere penaeid shrimp with Asian white spot syndrome virus and Asian yellow head virus. Journal of Aquatic Animal Health 10, 271-281, 1998.

    Lin, H., Romsos, D. R., Tack, P. I., and Leveille, G. A. Effects of fasting and feeding various diets on hepatic lipogenic enzyme activities in coho salmon (Oncorhynchus kisutch (Walbaum), The Journal of Nutrition 107, 1477-1483, 1977.

    Lin, X., Xie, S., Su, Y., and Cui, Y. Optimum temperature for the growth performance of
    juvenile orange-spotted grouper (Epinephelus coioides H.). Chinese Journal of Oceanology
    and Limnology 26, 69-75, 2008.

    Liao, I. C., Su, H. M., and Chang, E. Y. Techniques in finfish larviculture in Taiwan. Aquaculture 200, 1-31, 2001.

    Ling, Y. M., Shaw, M. H., Ayala, C., Coppens, I., Taylor, G. A., Ferguson, D. J., and Yap, G. S. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. Journal of Experimental Medicine 203, 2063-2071, 2006.

    Liu, B., Oltvai, Z. N., Bayır, H., Silverman, G. A., Pak, S. C., Perlmutter, D. H., and Bahar, I. Quantitative assessment of cell fate decision between autophagy and apoptosis. Scientific Reports 7, 17605, 2017.

    Liu, Y., and Bassham, D. C. Autophagy: Pathways for self-eating in plant cells. Annual Review of Plant Biology 63, 215-237, 2012.

    Long, S. A., Rieck, M., Sanda, S., Bollyky, J. B., Samuels, P. L., Goland, R., Ahmann, A., Rabinovitch, A., Aggarwal, S., Phippard, D., Turka, L. A. Ehlers, M. R., Bianchine, P. J., Boyle, K. D., Adah, S. A., Bluestone, J. A., Buckner, J. H., and Greenbaum, C. J. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61, 2340-2348, 2012.

    Luo, L., Zhang, P., Zhu, R., Fu, J., Su, J., Zheng, J., and Gong, Q. Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Frontiers in Plant Science 8, 1459, 2017.

    Lv, X., Pu, X., Qin, G., Zhu, T., and Lin, H. The roles of autophagy in development and stress responses in Arabidopsis thaliana. Apoptosis 19, 905-921, 2014.

    Lysenko, L., Sukhovskaya, I., Borvinskaya, E., Krupnova, M., Kantserova, N., and Nemova, N. Detoxification and protein quality control markers in the mussel Mytilus edulis (Linnaeus) exposed to crude oil: Salinity-induced modulation. Estuarine, Coastal and Shelf Science 167, 220-227, 2015.

    Makrinos, D. L., and Bowden, T. J. Natural environmental impacts on teleost immune function. Fish and Shellfish Immunology 53, 50-57, 2016.

    Malagelada, C., Jin, Z. H., Jackson-Lewis, V., Przedborski, S., and Greene, L. A. Rapamycin Protects against Neuron Death in In Vitro and In Vivo Models of Parkinson's Disease. Journal of Neuroscience 30, 1166-1175, 2010.

    Marsh, M., and Helenius, A. Virus entry: open sesame. Cell 124, 729-740, 2006.

    Masola, B., Chibi, M., Naik, Y. S., Kandare, E., and Zaranyika M. Activities of glutamate dehydrogenase and aspartate and alanine aminotransferases in freshwater snails Helisoma duryi and Lymnaea natalensis exposed to copper. Biomarkers 8, 33-42, 2003.

    McCue, D. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comparative Biochemistry and Physiology - Part A: Molecular and Integrative Physiology 156, 1-18, 2010.

    McPhee, C. K., and Baehrecke, E. H. Autophagy in Drosophila melanogaster. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1793, 1452-1460, 2009.

    Meeuwig, M. H., Bayer, J. M., and Seelye, J. G. Effects of Temperature on Survival and Development of Early Life Stage Pacific and Western Brook Lampreys. Transactions of the American Fisheries Society 134, 19-27, 2005.

    Mercer, J., Schelhaas, M., and Helenius, A. Virus entry by endocytosis. Annual Review of Biochemistry 79, 803-833, 2010.

    Michaeli, S., Galili, G., Genschik, P., Fernie, A. R., and Avin-Wittenberg, T. Autophagy in plants – what’s new on the menu? Trends in Plant Science 21, 134-144, 2016.

    Miller, K. M., Schulze, A. D., Ginther, N., Li, S., Patterson, D. A., Farrell, A. P., and Hinch, S. G. Salmon spawning migration: Metabolic shifts and environmental triggers. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 4, 75-89, 2009.

    Mijaljica, D., Prescott, M., and Devenish, R. J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy 7, 673-682, 2011.

    Mizushima, N. Autophagy: process and function. Genes and Development 21, 2861-2873, 2007a.

    Mizushima, N., and Yoshimori, T. How to interpret LC3 immunoblotting. Autophagy 3, 542-545, 2007b.

    Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069 -1075, 2008.

    Mizushima, N., Yoshimori, T., and Levine, B. Methods in mammalian autophagy research. Cell 140, 313-326, 2010.

    Moravec F., and Manoharan J. Gonad-infecting species of Philometra (Nematoda: Philometridae) from groupers Epinephelus spp. (Osteichthyes: Serranidae) in the Bay of Bengal, India. Acta Parasitologica 59, 596-605, 2014.

    Moriyasu, Y., and Ohsumi, Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiology 111, 1233-1241, 1996.

    Mortimore G. E., Hutson N. J., and Surmacz C. A. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proceedings of the National Academy of Sciences of the United States of America 80, 2179-2183, 1983.

    Mortimore, G. E., and Pösö, A. R. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annual Review of Nutrition 7, 539-564, 1987.

    Munday, B. L., Kwang, J., and Moody, N. Betanodavirus infections of teleost fish: a review.
    Journal of Fish Diseases 25, 127-142, 2002.

    Myung, J., Kim, K. B., and Crews, C. M. The ubiquitin‐proteasome pathway and proteasome inhibitors. Medicinal Research Reviews 21, 245-273, 2001.

    Nakashima, A., Tanaka, N., Tamai, K., Kyuuma, M., Ishikawa, Y., Sato, H., and Sugamura, K. Survival of parvovirus B19-infected cells by cellular autophagy. Virology 349, 254-263, 2006.

    Nguyen, T. N., Padman, B. S., Usher, J., Oorschot, V., Ramm, G., and Lazarou, M. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. The Journal of Cell Biology 215, 857-874, 2016.

    Nishimura, T., Tamura, N., Kono, N., Shimanaka, Y., Arai, H., Yamamoto, H., and Mizushima, N. Autophagosome formation is initiated at phosphatidylinositol synthase‐enriched ER subdomains. The European Molecular Biology Organization Journal 36, 1719-1735, 2017.

    Nivon, M., Richet, E., Codogno, P., Arrigo, A. P., and Kretz-Remy, C. Autophagy activation by NFκB is essential for cell survival after heat shock. Autophagy 5, 766-783, 2009.

    Nolan, T., Hands, R. E., and Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nature Protocols 1, 1559-1582, 2006.

    Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nature Reviews Molecular Cell Biology 2, 211-216, 2001.

    Panyasrivanit, M., Khakpoor, A., Wikan, N., and Smith, D. R. Linking dengue virus entry and translation/replication through amphisomes. Autophagy 5, 434-435, 2009.

    Parzych, K. R., and Klionsky, D. J. An overview of autophagy: morphology, mechanism, and regulation. Antioxidants and Redox Signaling 20, 460-473, 2014.

    Patterson, S., Johnston, I. A., and Goldspink, G. The effect of starvation on the chemical composition of red and white muscles in the plaice (Pleuronectes platessa). Experientia 30, 892-894, 1974.

    Pettersen, E. F., Bjørløw, I., Hagland, T. J., and Wergeland, H. I. Effect of seawater
    temperature on leucocyte populations in Atlantic salmon post-smolts. Veterinary
    Immunology and Immunopathology 106, 65-76, 2005.

    Pierce, A., Podlutskaya, N., Halloran, J. J., Hussong, S. A., Lin, P. Y., Burbank, R., Hart, M. J., and Galvan, V. Over‐expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's‐like deficits in mice modeling the disease. Journal of Neurochemistry 124, 880-893, 2013.

    Pierre, S., Gaillard, S., Prevot-D’Alvise, N., Aubert, J., Rostaing-Capaillon, O., Leung-Tack,
    D., and Grillasca, J. P. Grouper aquaculture: Asian success and Mediterranean trials. Aquatic
    Conservation: Marine and Freshwater Ecosystems 18, 297-308, 2008.

    Powers, R. W., Kaeberlein, M., Caldwell, S. D., Kennedy, B. K., and Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes and Development 20, 174-184, 2006.

    Puleston, D, J., and Simon, A, K. Autophagy in the immune system. Immunology 14, 1-18, 2014.

    Putnam, A. E., and Broecker, W. S. Human-induced changes in the distribution of rainfall. Science Advances 3, e1600871, 2017.

    Qiu, Z., Zhang, S., Li, A., Yu, J., Li, N., Huang, F., and Liu, B. The role of curcumin in disruption of HIF-1α accumulation to alleviate adipose fibrosis via AMPK-mediated mTOR pathway in high-fat diet fed mice. Journal of Functional Foods 33, 155-165, 2017.

    Riddle, D.L., and Gorski, S.M. Shaping and stretching life by autophagy. Developmental Cell 5, 364-365, 2003.

    Roessig, J. M., Woodley, C. M., Cech, J. J., and Hansen, L. J. Effects of global climate change on marine and estuarine fishes and fisheries. Reviews in Fish Biology and Fisheries 14, 251-275, 2004.

    Ru, W., Peng, Y., Zhong, L., and Tang, S. J. A role of the mammalian target of rapamycin (mTOR) in glutamate-induced down-regulation of tuberous sclerosis complex proteins 2 (TSC2). Journal of Molecular Neuroscience 47, 340-345, 2012.

    Rubinsztein, D. C., Bento, C. F., and Deretic, V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. Journal of Experimental Medicine 212, 979-990, 2015.

    Ruocco, N., Costantini, S., and Costantini, M. Blue-print Autophagy: Potential for cancer treatment. Marine Drugs 14, 138, 2016.

    Saied, A. S., Keutgen, A. J., and Noga, G. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’and ‘Korona’. Scientia Horticulturae 103, 289-303, 2005.

    Saitoh, T., and Akira, S. Regulation of innate immune responses by autophagy-related proteins. The Journal of Cell Biology 189, 925-935, 2010.

    Santos, R. X., Correia, S. C., Cardoso, S., Carvalho, C., Santos, M. S., and Moreira, P. I. Effects of rapamycin and TOR on aging and memory: implications for Alzheimer’s disease. Journal of Neurochemistry 117, 927-936, 2011.

    Sarkar, S., Krishna, G., Imarisio, S., Saiki, S., O'kane, C. J., and Rubinsztein, D. C. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Human Molecular Genetics 17, 170-178, 2007.

    Schlag, A. K. Aquaculture: an emerging issue for public concern. Journal of Risk Research 13, 829-844, 2010.

    Seiliez, I., Dias, K. and Cleveland, B. M. Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 307, 1330-1337, 2014.

    Selman, C., and Partridge, L. A double whammy for aging? Rapamycin extends lifespan and inhibits cancer in inbred female mice. Cell Cycle 11, 17-18, 2012.

    Sparrer, K. M., and Gack, M. U. TRIM proteins: New players in virus-induced autophagy. PLoS Pathogens 14, e1006787, 2018.

    Spilman, P., Podlutskaya, N., Hart, M. J., Debnath, J., Gorostiza, O., Bredesen, D., Richardson, A., Strong, R., and Galvan, V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease. PloS One 5, e9979, 2010.

    Stetter, K. O. Hyperthermophiles in the history of life. Philosophical Transactions of the
    Royal Society of London. Series B, Biological Sciences 361, 1837-1842, 2006.

    Stricher, F., Macri, C., Ruff, M., and Muller, S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 9, 1937-1954, 2013.

    Surviladze, Z., Sterk, R. T., DeHaro, S. A., and Ozbun, M. A. Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. Journal of Virology 87, 2508-2517, 2013.

    Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., and Ohsumi, Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. The European Molecular Biology Organization Journal 20, 5971-5981, 2001.

    Suzuki, K., and Ohsumi, Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. Federation of European Biochemical Societies Letters 581, 2156-2161, 2007.

    Suzuki, S. W., Yamamoto, H., Oikawa, Y., Kondo-Kakuta, C., Kimura, Y., Hirano, H., and Ohsumi, Y. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proceedings of the National Academy of Sciences of the United States of America 112, 3350-3355, 2015.

    Takeshige, K., Baba M., Tsuboi S., Noda T., and Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. The Journal of Cell Biology 119, 301-311, 1992.

    Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84-91, 2005.

    Tavakkoli, E., Rengasamy, P., and McDonald, G. K. High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany 61, 4449-4459, 2010.

    Terrazas, M. M., Adams, J. R., Sudheesh, P. S., and Cain, K. D. Effects of Diel Temperature Fluctuation on Growth, Stress Response, and Immune Function of Burbot. Transactions of the American Fisheries Society 146, 996-1007, 2017.

    Thummel, C.S. Steroid-triggered death by autophagy. Bioessays 23, 677-682, 2001.

    Tooze, J., Hollinshead, M., Ludwig, T., Howell, K., Hoflack, B., and Kern, H. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. The Journal of Cell Biology 111, 329-345, 1990.

    Tripathy, B. C., and Oelmüller, R. Reactive oxygen species generation and signaling in plants. Plant Signaling and Behavior 7, 1621-1633, 2012.

    Tsang, C. K., Qi, H., Liu, L. F., and Zheng, X. S. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discovery Today 12, 112-124, 2007.

    Tsuboyama, K., Koyama-Honda, I., Sakamaki, Y., Koike, M., Morishita, H., and Mizushima, N. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036-1041, 2016.

    Tsui, W. C., Chen, J. C., and Cheng, S. Y. The effects of a sudden salinity change on cortisol, glucose, lactate, and osmolality levels in grouper Epinephelus malabaricus. Fish Physiology and Biochemistry 38, 1323-1329, 2012.

    Vicinanza, M., Korolchuk, V. I., Ashkenazi, A., Puri, C., Menzies, F. M., Clarke, J. H., and Rubinsztein, D. C. PI (5) P regulates autophagosome biogenesis. Molecular Cell 57, 219-234, 2015.

    Wang, L., Chen, M., Yang, J., and Zhang, Z. LC3 fluorescent puncta in autophagosomes or in protein aggregates can be distinguished by FRAP analysis in living cells. Autophagy 9, 756-769, 2013a.

    Wang, R. X. Interaction between betanodavirus and autophagy. Master thesis. Retrieved from National Taiwan University of Institute of Zoology. 2009.

    Wang, T. Y., Chen, Y. M., and Chen, T. Y. Molecular cloning of orange-spotted grouper (Epinephelus coioides) heat shock transcription factor 1 isoforms and characterization of their expressions in response to nodavirus. Fish and Shellfish Immunology 59, 123-136, 2016a.

    Wang, Y., Singh, R., Xiang, Y., and Czaja, M. J. Macroautophagy and chaperone‐mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology 52, 266-277, 2010.

    Wang, Y., Liu, Y., Lu, J., Zhang, P., Wang, Y., Xu, Y., Wang, Z., Mao, J. H., and Wei, G. Rapamycin inhibits FBXW7 loss-induced epithelial–mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells. Biochemical and Biophysical Research Communications 434, 352-356, 2013b.

    Wang, Y., Chen, N., Hegazy, A. M., Liu, X., Wu, Z., Liu, X., Zhao, L., i Qin, Q., Lan, J., and Lin, L. Autophagy induced by snakehead fish vesiculovirus inhibited its replication in SSN-1 cell line. Fish and Shellfish Immunology 55, 415-422, 2016b.

    Wataya-Kaneda, M., Tanaka, M., Nakamura, A., Matsumoto, S., and Katayama, I. A novel application of topical rapamycin formulation, an inhibitor of mTOR, for patients with hypomelanotic macules in tuberous sclerosis complex. Archives of Dermatology 148, 138-139, 2012.

    Winton, J. R. Recent advances in detection and control of infectious hematopoietic necrosis virus in aquaculture. Annual Review of Fish Diseases 1, 83-93, 1991.

    Wong, Y. C., and Holzbaur, E. L. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. Journal of Neuroscience 34, 1293-1305, 2014.

    Wong, Y. C., and Holzbaur, E. L. Autophagosome dynamics in neurodegeneration at a glance. Journal of Cell Science 128, 1259-1267, 2015.

    Wu, C. C. Characterization of gonad formation process in protogynous grouper by using gonadal development and germ cell related tracing markers. Master thesis. Retrieved from National Cheng Kung University of Institute of Biotechnology. 2014.

    Wu, T. T., Li, W. M., and Yao, Y. M. Interactions between autophagy and inhibitory cytokines. International Journal of Biological Sciences 12, 884-897, 2016.

    Xie, J., and Herbert, T. P. The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes. Cellular and Molecular Life Sciences 69, 1289-1304, 2012.

    Xie, Z., and Klionsky, D. J. Autophagosome formation: core machinery and adaptations. Nature Cell Biology 9, 1102-1109, 2007.

    Xiong, R., Zhou, W., Siegel, D., Kitson, R. R., Freed, C. R., Moody, C. J., and Ross, D. A novel Hsp90 inhibitor activates compensatory heat shock protein responses and autophagy and alleviates mutant A53T α-synuclein toxicity. Molecular Pharmacology 88, 1045-1054, 2015.

    Yabu, T., Imamura, S., Mizusawa, N., Touhata, K., and Yamashita M. Induction of autophagy by amino acid starvation in fish cells. Marine Biotechnology 14, 491-501, 2012.

    Yang, H., Fu, Q., Liu, C., Li, T., Wang, Y., Zhang, H., Lu, X., Sang, X., Zhong, S., and Huang, J., Mao, Y. Hepatitis B virus promotes autophagic degradation but not replication in autophagosome. Bioscience Trends 9, 111-116, 2015a.

    Yang, Z., Huang, J., Geng, J., Nair, U., and Klionsky, D. J. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Molecular Biology of the Cell 17, 5094-5104, 2006.

    Yang, Z., and Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Current Opinion in Cell Biology 22, 124-131, 2010.

    Yang, X., Yu, D. D., Yan, F., Jing, Y. Y., Han, Z. P., Sun, K., and Wei, L. X. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell and Bioscience 5, 14, 2015b.

    Yoon, M. S., and Choi, C. S. The role of amino acid-induced mammalian target of rapamycin complex 1 (mTORC1) signaling in insulin resistance. Experimental and Molecular Medicine 48, e201, 2017.

    Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983, 2004.

    Yu, Z. Q., Ni, T., Hong, B., Wang, H. Y., Jiang, F. J., Zou, S., Chen, Y., Zheng, X. L., Klionsky, D, J., Liang, Y., and Xie, Z. Dual roles of Atg8− PE deconjugation by Atg4 in autophagy. Autophagy 8, 883-892, 2012.

    Zhang, M., Jiang, M., Bi, Y., Zhu, H., Zhou, Z., and Sha, J. Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PloS One 7, e41412, 2012.

    Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., and Jin, S. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proceedings of the National Academy of Sciences of the United States of America 106, 19860-19865, 2009.

    Zhao, Y., Gong, S., Shunmei, E., and Zou, J. Induction of macroautophagy by heat. Molecular Biology Reports 36, 2323-2327, 2009.

    Zhou, Z., Jiang, X., Liu, D., Fan, Z., Hu, X., Yan, J., Wang, M., and Gao, G. F. Autophagy is involved in influenza A virus replication. Autophagy 5, 321-328, 2009.

    Zhou, J., Wang, J., Cheng, Y., Chi, Y. J., Fan, B., Yu, J. Q., and Chen, Z. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genetics 9, e1003196, 2013.

    無法下載圖示 校內:2023-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE