簡易檢索 / 詳目顯示

研究生: 杜元椿
Tu, Yuan-Chun
論文名稱: 基於梯度搜尋偵測方法的上行多用戶共享存取系統
Uplink Multi-User Shared Access System Based on Gradient Search Detection
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 70
中文關鍵詞: 正交分頻多工碼域非正交多用戶共享存取梯度搜尋演算法差分度量
外文關鍵詞: OFDM, NOMA, MUSA, GSA, DM
相關次數: 點閱:52下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第五代行動通訊(5G) 與未來第六代系統面對物聯網(IoT) 與機器型通訊(MTC)所帶來的大規模連線需求,使傳統正交多重存取(Orthogonal Multiple Access, OMA)架構難以因應其高過載(overloading) 與低延遲的通訊特性。為此,非正交多重存取(Non-Orthogonal Multiple Access, NOMA) 被視為應對此類挑戰的重要技術。其中,MUSA (Multi-User Shared Access) 系統藉由設計低互相關性的複數展頻碼對使用者訊號進行展頻,並結合正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM) 架構,將展頻結果映射至各子載波上傳輸,於接收端再搭配干擾消除技術,有效分離並解碼多位使用者訊號。
    本論文針對MUSA 系統於過載情境下之接收端偵測問題,提出基於差分度量的梯度搜尋演算法(Gradient Search Algorithm, GSA) 應用於多使用者訊號之偵測,以改善傳統方法之效能與複雜度。本文中之GSA 方法以初始最小均方誤差(Minimum Mean Square Error, MMSE) 解為起點,結合一階與多階差分度量之結構性資訊,透過局部更新與搜尋方法,逐步逼近最大似然(Maximum Likelihood, ML) 偵測效能,並大幅降低運算成本。GSA 系列演算法包含標準搜尋(SS)、交換搜尋(SOC 與MOC)、跳躍搜尋(JS) 與所提出之降階搜尋(ROS) 等方法,並對其數學原理與演算法流程進行完整推導與說明。
    模擬結果顯示,在相同展頻碼與通道條件下,GSA 系列演算法之整體位元錯誤率(Bit Error Rate, BER) 優於最小均方誤差連續干擾消除(MMSE-Successive Interference Cancellation, MMSE-SIC) 方法,部分改進型演算法(如JS 與ROS-4) 可進一步逼近ML 偵測效能,同時於乘法複雜度上展現顯著優勢,適合應用於高負載與資源受限之通訊場景。此外,本文亦針對GSA 與MMSE-SIC 方法之實數運算複雜度進行精確統計與比較,釐清各方法於不同使用者數下之運算需求,為未來演算法設計與應用提供參考依據。

    In response to the growing connectivity demands of the Internet of Things (IoT) and machine-type communications (MTC) in 5G and beyond, traditional Orthogonal Multiple Access (OMA) schemes have become insufficient for supporting high-overload and low-latency requirements. As a promising alternative, Non-Orthogonal Multiple Access (NOMA) techniques such as Multi-User Shared Access (MUSA) have been proposed. MUSA employs complex spreading codes with low cross-correlation and interference cancellation techniques to enable effective separation and decoding of multiple simultaneous uplink users over shared spectrum.
    This thesis addresses the multi-user detection problem in overloaded MUSA systems by applying Gradient Search Algorithms (GSA). These methods utilize structured difference metrics to iteratively refine an initial MMSE-based estimate, gradually approaching Maximum Likelihood (ML) performance with much lower computational complexity. The GSA framework includes Standard Search (SS), Changing Search (SOC and MOC), Jump Search (JS), and the proposed Reduced-Order Search (ROS).
    MUSA is integrated with Orthogonal Frequency Division Multiplexing (OFDM),where spread signals are mapped onto subcarriers. At the receiver, cyclic prefix removal, FFT, and multi-user detection are performed. Simulation results show that GSA-based methods, particularly JS and ROS-4, outperform MMSE-SIC in bit error rate while reducing real-valued multiplications. Complexity analysis highlights practical advantages for resource-constrained systems.

    摘要i 英文延伸摘要ii 誌謝vi Table of Contents vii List of Tables ix List of Figures x Chapter 1. 序章 1 1.1. 研究動機 1 1.2. 論文架構 2 1.3. 符號表示 2 Chapter 2. Multi-User Shared Access 3 2.1. 系統架構 3 2.1.1. 複數展頻碼 4 2.1.2. OFDM 簡介 5 2.1.3. 訊號流程與接收模型 6 2.2. 偵測方法 7 2.2.1. MMSE 7 2.2.2. MMSE-SIC 9 2.2.3. ML偵測 10 2.3. 模擬結果與分析 10 Chapter 3. 梯度搜尋偵測方法 14 3.1. 梯度搜尋的基礎 14 3.1.1. 實數訊號模型 14 3.1.2. 差分度量 15 3.1.3. 差分度量的階數與遞迴關係 17 3.1.4. 使用梯度搜尋進行ML偵測 18 3.1.5. 預計算複雜度 19 3.2. 梯度搜尋演算法 20 3.2.1. 標準搜尋(Standard Search) 20 3.2.2. 交換搜尋(Changing Search) 26 3.3. 改進型梯度搜尋演算法 34 3.3.1. 跳躍搜尋(Jump Search) 34 3.3.2. 降階搜尋(Reduced-Order Search) 42 3.4. GSA 與MMSE-SIC 之複雜度比較 47 3.4.1. MMSE 與MMSE-SIC 複雜度推導說明 47 3.4.2. 複雜度統整 50 Chapter 4. 結論 53 Chapter 5. 未來展望 54 References 56

    [1] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5g,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2294–2323, 2018.
    [2] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-s. Kwak, “Power-domain nonorthogonal multiple access (noma) in 5g systems: Potentials and challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742, 2017.
    [3] H. Nikopour and H. Baligh, “Sparse code multiple access,” in Proc. IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2013, pp. 332–336.
    [4] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-user shared access for internet of things,” in Proc. IEEE VTC, 2016, pp. 1–5.
    [5] W.-Y. Chang and M.-X. Chang, “Efficient Soft MIMO Detection Algorithms Based on Differential Metrics,” in Proc. IEEE VTC, 2017, pp. 1–5.
    [6] M.-X. Chang and W.-Y. Chang, “Maximum-likelihood detection for MIMO systems based on differential metrics,” IEEE Trans. Signal Process., vol. 65, no. 14, pp. 3718–3732, 2017.
    [7] S. Hara and R. Prasad, “Overview of multicarrier cdma,” IEEE Commun. Mag., vol. 35, no. 12, pp. 126–133, 1997.
    [8] W. Zou and Y. Wu, “Cofdm: an overview,” IEEE Trans. Broadcast., vol. 41, no. 1, pp. 1–8, 1995.
    [9] R. Van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Artech House, 2000.
    [10] Z. Yuan, Y. Hu, W. Li, and J. Dai, “Blind multi-user detection for autonomous grant-free high-overloading multiple-access without reference signal,” in Proc. IEEE VTC, 2018, pp. 1–7.
    [11] J. Yang, A. Wang, N. Ye, Y. Liu, and H. Xu, “Simplified random access design for satellite internet of things with noma,” in Proc. Int. Wireless Commun. Mobile Comput. (IWCMC), 2021, pp. 128–132.
    [12] E. M. Eid, M. M. Fouda, A. S. Tag Eldien, and M. M. Tantawy, “Performance analysis of musa with different spreading codes using ordered sic methods,” in Proc. 12th Int. Conf. Comput. Eng. Syst. (ICCES), 2017, pp. 101–106.
    [13] 李柏均 and 張名先, “Improved Detection Method for Single-Carrier Block Transmission Systems with Frequency-Domain Equalization Based on Gradient Search,” Master’s thesis, National Cheng Kung University, 2023. [Online]. vailable: https://thesis.lib.ncku.edu.tw/thesis/detail/fc237ce265087444e32f31133d21a6e7/
    [14] 洪士庭 and 張名先, “A Code-Domain NOMA Scheme Based on Extended Walsh Codes and Gradient Search Detection Method,” Master’s thesis, National Cheng Kung University, 2024. [Online]. Available: https://thesis.lib.ncku.edu.tw/thesis/detail/50a88f4056fc41bd6f715b70f3bd0600/
    [15] Y. Tan, S. Li, B. Su, and Z. Xia, “Musa system based on extended sequences optimization and user rate power allocation,” in Proc. 9th IEEE Int. Conf. Control Sci. Syst. Eng. (ICCSSE), 2023, pp. 375–379.
    [16] C. Florea, M.-G. Berceanu, R.-F. Trifan, and I.-M. Marcu, “Clustering approach for reliable wireless communication,” Applied Sciences, vol. 14, no. 1, 2024. [Online]. Available: https://www.mdpi.com/2076-3417/14/1/13
    [17] J. Su and Z. Si, “Blind recognition and detection for hybrid modulation in grant-free multiple access,” in Proc. 2023 9th IEEE Int. Conf. on Computer and Communications (ICCC), 2023, pp. 1451–1456.
    [18] T. Sivalingam, S. Ali, N. Huda Mahmood, N. Rajatheva, and M. Latva-Aho, “Deep neural network-based blind multiple user detection for grant-free multi-user shared access,” in Proc. IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2021, pp. 1–7.
    [19] W. B. Ameur, P. Mary, M. Dumay, J.-F. Hélard, and J. Schwoerer, “Power allocation for ber minimization in an uplink musa scenario,” in Proc. IEEE VTC, 2020, pp. 1–5.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE