| 研究生: |
高邦瀚 Kao, Pang-Han |
|---|---|
| 論文名稱: |
結合微流體力聚焦法與層流現象在微粒尺寸分離之應用 Using Micro-Hydrodynamic Focusing and Laminar Flow Phenomenon for Particle Separation |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 分離 、微流體 |
| 外文關鍵詞: | separation, microfluidic |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微型流式細胞儀是近年來生醫檢測晶片熱門的發展重點之ㄧ,其優點可以快速檢測樣本內容,無論是細胞尺寸、種類等。並且,近年更有Seki之研究團隊著重於運用流體於微管道內為層流的現象,即可達到不同微粒尺寸之分離。故本研究期結合此兩種微流晶片之優點,達成可分析的自然流場樣本分離晶片。
微管道製作方式則是利用微機電製程,製作以polydimethylsiloxane (PDMS)與玻璃為基材之微流體系統。本研究藉由數學推導,獲得矩形管道流場速度分佈關係式,比照電壓與電阻的關係,求出適用於矩形管道的流阻公式(RA.A.D),並與Hagen-Poiseuille equation比較,由實驗結果成功驗證本研究使用的流阻公式較適用於矩形管道。
本研究成功整合微流體力聚焦系統及自然流場微粒分離機制於單一微流系統,本實驗以2 μm與10 μm的乳膠微粒測試,設定640 μl/hr邊鞘流流量與40 μl/hr樣本流(2+10 μm)流量推入管道,由實驗結果可確定微粒均被聚焦至管道中央後流入主管,且流經障礙物後,由於層流擴張的現象,使2 μm與10 μm微粒產生相異的位移路徑而後分別被收集出。統計微粒分佈比例,此二種微粒在出口位置的表現上有相當的鑑別率,故本研究針對微流體聚焦系統提供了另一個有效的微粒分離機制。
The micro flow cytometry is an important technology for sample analysis in bio-chip science. The advantage is that bio-particles can be analyze rapidly no matter cell size or type. Among various methods, recently, the development of physical methods (without external forces) by making use of the laminar flow profile inside microchannels has drawn certain attention. In this study, we intend to integrate the above methods in our systems for separation of particles in nature flow and be used for analysis in the future.
First, we introduce the theories of micro-hydrodynamic focusing and particle-separation method, then prove the suitable flow resistance equation and explain the design of micro-fluidic chip. The study employed MEMS fabrication technique for building microchannel using PDMS elastomer. The master is formed on silicon wafer using an epoxy-based photoresist. PDMS is cast against the master producing molded layer containing channel then bonded on a glass to build microchannel.
Theoretically, by controling the flow rate at the inlet, particles will move along centerline of the channel. When particles flow through the obstacle, they follow different paths according to their sizes due to laminar flow profiles. In this study, we can separate 2 μm and 10 μm diameter particles in an integrated microfluidic chip.
[1] Richard P. Feynman, “There's Plenty of Room at the Bottom”, the annual meeting of the American Physical Society, 1959, Pasadena, CA, December 29.
[2] L.W. van H. Nicole, V. Oscar, M. M. L. van H. Adele, J. K. Esther, P. Ad, A. Aharoni, J. van T. Arjen, K. Jaap, “The application of DNA microarrays in gene expression analysis”, Journal of Biotechnology, 2000 ,78, 271-280.
[3] F. Vinet, P. Chaton, Y. Fouillet, “Microarrays and microfluidic devices: miniaturized system for biological analysis”, Microelectronic Engineering, 2002, 61-62, 41-47.
[4] D. Beebe, M. Wheeler, H. Zeringue, E. Walters, S. Raty,“Microfluidic technology for assisted reproduction”, Theriogenology, 2002, 57, 125-135.
[5] M. S. Talary, J. P. H. Burt, P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 1998, 117, S191-S203.
[6] M. A. Burns, B. N. Johnson, S. N. Brahmasandra,“An integrated nanoliter DNA analysis device”, Science, 1998, 282(16), 484-487.
[7] D. Schmalzing, W. Nashabeh, X.W. Yao, R. Mhatre, F. Regnier, N. B. Afeyan, M. Fuchs, Analytical Chemistry, 1995, 67, 606-612.
[8] Gwo-Bin Lee, Chen-I Hung, Bin-Jo Ke, Guan-Ruey Huang, Bao-Herng Hwei, Hui-Fang Lai, “Hydrodynamic focusing for a micromachined flow cytometer”, Journal of Fluids Engineering, 2001, vol.123, 672-679.
[9] Emil Chmela and Robert Tijssen,“A Chip System for Size Separation of Macromolecules and Particles by Hydrodynamic Chromatography”, Analytical Chemistry, 2002, 74, 3470-3475.
[10] Che-Hsin Lin and Gwo-Bin Lee,“Micromachined flow cytometers with embedded etched optic fibers for optical detection”, Journal of Micromechnics and Microengineering, 2003, 13, 447-453.
[11] Lotien Richard Huang, Edward C. Cox, Robert H. Austin, and James C. Sturm, “Continuous Particle Separation Through Deterministic Lateral Displacement”, Science, 2004, 304, 987–990.
[12] Masumi Yamada, Megumi Nakashima,and Minoru Seki, “Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel”, Anaytical Chemistry, 2004, 76, 5465-5471.
[13] Junya Takagi, Masumi Yamada, Masahiro Yasuda, Minoru Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches”, Lab on a Chip, 2005, 5, 778-784.
[14] Dongeun Huh, Wei Gu, Yoko Kamotani, James B Grotberg, Shuichi Takayama, “Microfluidics for flow cytometric analysis of cells and particles”, Physiological Measurement, 2005, 26, R73-R98.
[15] A. Radbruch, “Flow cytometry and cell sorting”, Springer-Verlag Inc., 1992, 7-11.
[16] Lung-Ming Fu, Ruey-Jen Yang, Che-Hsin Lin, Yu-Jen Pan, Gwo-Bin Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection”, Analytica Chimica Acta, 2004, 507, 163-169.
[17] Petra S. Dittrich, Petra Schwille, “An integrated microfluidic syatem for reaction, high-sensitivity, detection, and sorting of fluorescent cells and particles”, Analytical Chemistry, 2003, 75, 5767-5774.
[18] A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter”, Lab on a Chip, 2003, 3, 22-27.
[19] Bo Yao, Guo-An Luo, Xue Feng, Wei Wang, Ling-xin Chen, Yi-ming Wang, “A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sotting”, Lab on a Chip, 2004, 4, 603-607.
[20] Mark M. Wang, Eugene Tu, Daniel E Raymond, Joon Mo Yang, Haichuan Zhang, Norbert hagen, Bo Dees, Elinore M Mercer, Anita H Forster, Ilona Kariv, Philippe J Marchand, William F Butler, “Microfluidic sorting of mammalian cells by optical force switching”, Nature Biotechnology, 2005, 23, 83-87.
[21] Honggu Chun, Taek Dong Chung, Hee Chan Kim, “Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges”, Analytical Chemistry, 2005, 77, 2490-2495.
[22] H. C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysics, 1997, 20, 193-219.
[23] Steve Wereley, “Nano-Bio-Micro fluids tutorial”, Nanotech 2004.
[24] O. Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London A, 1883, 174-935.
[25] X. F. Peng, G. P. Peterson, B. X. Wang, “Frictional flow characteristics of water flowing through rextangular microchannel”, Experimental Heat transfer, 1994, 7, 249-264.
[26] Gad-el-Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture”, Journal of Fluids Engineering, 1999, Vol. 121.
[27] P. Wu, W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 1983, 23, 273-277.
[28] Ajay Anil Deshmukh, “Continuous microfluidic mixing using pulsatile micropumps”, U. C. Berkeley, 2001.
[29] W. Kern and D. A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology”, RCA Rev., 1970, 187.
[30] G. W. Rubloff, “Defect Microchemistry in SiO2 /Si Structures”, Journal of Vacuum Science & Technology A Vacuum Surface and Films, 1990, 8, 1857.
[31] M. Shaw, D. Nawrocki, R. Hurditch and D. Johnson, “Improving the process capability of SU-8”, MicroChem Corp., Newton MA, 02464.
[32] DATA Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 2-25. released by MicroChem. Corp..
[33] N. LaBianca and J. Delorme, “High aspect ratio resist for thick film application”, Proceedings of SPIE, 1995, 2438, 846-852.
[34] Pontus Linderholm, Peter Åsberg, “3D/Multi-Layered PDMS Microfluidic Systems”, Project Report, 2004.
[35] Jennifer Monahan, Andrew A. Gewirth, and Ralph G. Nuzzo, “A Method for Filling Complex Polymeric Microfluidic Devices and Arrays”, Analytical Chemistry, 2001, 73, 3191-3197.
[36] Jessamine Na Lee, Cheolmin Park, and George M. Whitesides, ”Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Device”, Analytical Chemistry, 2003, 75, 6544-6554.
[37] J. Cooper McDonald, “Fabrication of microfluidic system in poly(dimethylsiloxane)”, Electrophoresis, 2000, 21, 27-40, Review.
[38] CRC Handbook of Chemistry and Physics , CRC Press.