| 研究生: |
洪崇展 Hung, chung-chan |
|---|---|
| 論文名稱: |
微結構剖面對蜂巢材料多軸破裂行為之影響 |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 破裂韌性 、蜂巢 |
| 外文關鍵詞: | honeycomb, fracture toughness |
| 相關次數: | 點閱:107 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞型材料具有質量輕、低熱傳導性與高強度之優點,因此已廣泛應用於各類工程中,如泡沫混凝土材料、三明治層板、泡沫陶瓷材料、以及各種輕質材料等等。由於製造過程中表面張力之作用使得細胞型材料之微觀構件為變剖面斷面,再者,細胞型材料之微觀結構將影響其力學性質,因此本研究針對具變剖面斷面之蜂巢材料探討其破裂行為。首先,使用有限元素套裝軟體ABAQUS,建立含一巨觀裂紋之蜂巢數值模型,分別進行第一型、以及第二型破裂韌性分析,求得不同相對密度與微觀結構幾何形狀下蜂巢材料之破裂韌性,其中發現於蜂巢材料裂紋尖端前第一根未斷裂微觀構件所承受之最大彎矩值與微觀參數值呈一線性關係,並利用迴歸分析得一函數式,其可迅速計算獲得各種相對密度及微觀幾何形狀蜂巢材料之破裂韌性數值解,此外,亦建立一函數式可描述蜂巢材料最大破裂韌性之微觀幾何形狀。最後,利用線彈性疊加原理得蜂巢材料之混合型破裂準則,並建立蜂巢材料多軸破裂面。
none
[1] L.J. Gibson and M.F. Ashby, “Cellular solids: Structure & Properties,” 2nd edition, Pergamon Press, Oxford. (1998).
[2] A.E. Simone and L.J. Gibson, “Aluminum foams produced by liquid-state processes,” Acta Mater. , Vol. 46, pp 3109-3123 (1998).
[3] A.E. Simone and L.J. Gibson, “Effects of solid distribution on the stiffness and strength of metallic foams,” Acta Mater. , Vol.46, pp 2139-2150 (1998).
[4] C.H. Chuang , “Mechanical properties of honeycombs with plateau borders,” Ph.D. dissertation, Dept. of Civil Engng., National Cheng Kung University, Taiwan (2002).
[5] W.E. Warren and A.M. Kraynik, “Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials,” Mech. Mater. , Vol. 6, pp 27-37 (1987).
[6] T.C. Triantafillou and L.J. Gibson, ”Failure mode maps for foam core sandwich beams,” Material Science and Engineering, Vol.95, pp 37-53 (1987).
[7] J.S. Huang and S.Y. Liu,” Fatigue of honeycombs under in-plane multiaxial loads,” Material Science and Engineering, Vol.308, pp 45-52 (2001).
[8] C.H. Chuang and J.S. Huang, “Effects of solid distribution on the elastic buckling of honeycombs.” Int. J. Mech. Sci., Vol.44, pp 1429-1443 (2002).
[9] C.H. Chuang and J.S. Huang, “Elastic moduli and plastic collapse strength of hexagonal honeycombs with plateau borders,” Int. J. Mech. Sci., Vol.44, pp 1827-1844 (2002).
[10] C.H. Chuang and J.S. Huang, “Yield surfaces for hexagonal honeycombs with plateau borders under in-plane biaxial loads,” Acta Mechanica, Vol.159, pp 157 (2002).
[11] S.K. Maiti, M.F. Ashby and L.J. Gibson, ”Fracture Toughness of Brittle Cellular Solids,” Scripta Metallurgica, Vol. 18, pp. 213-217. (1984).
[12] J.S. Huang and L.J. Gibson,” Fracture toughness of brittle honeycombs,” Acta Metall. Mater. Vol.39, No.7, pp. 1617-1626. (1991).
[13] J. S. Huang and L. J. Gibson,” Fracture toughness of brittle foams,” Acta Metall. Mater. Vol.39, No.7, pp. 1627-1636. (1991).
[14] J.S. Huang and J.Y. Lin,” Mixed-mode fracture of brittle cellular materials,” Journal of Materials Science, Vol.31, pp. 2647-2652. (1996).
[15] J.S. Huang and M.S. Chiang, “Effects of microstructure, specimen and loading geometries on of brittle honeycombs,” Engineering Fracture Mechanics, Vol. 54, No. 6, pp. 812-821 (1996).