| 研究生: |
邱奕欽 Qiu, Yi-Qin |
|---|---|
| 論文名稱: |
一個帶有不耐煩顧客及假期狀態中工作的排隊系統之分析與模擬 Analysis and simulation in queueing systems with impatient customers and working vacation |
| 指導教授: |
許瑞麟
Sheu, Ruey-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 排隊理論 、工作假期 、不耐煩 、顧客 |
| 外文關鍵詞: | queueing theory, working vacation, impatient customer |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們考慮了帶有不耐煩顧客以及在假期狀態中工作的排隊系統。 顧客不只會在工作假期時離開也會在一般的服務時期離開。當服務器發現系統是空的時候,會進入工作假期模式。而在工作假期時,服務器不會停止運作而是用比起一般時期而言相對低的服務速率來繼續運作。我們的論文是分析關於這個排隊模型下的一些指標,例如,系統平均的大小,系統為空的機率,以及系統的壅塞率等。在最後,我們給出了一些數值結果來研究在不同的參數底下,這些模型表現的差異。
In this paper, we consider the queueing system with impatient customers and working vacation. Customers will leave not only in the working vacation period but also in the busy period. When the server finds out that the queue is empty, it will turn into working vacation period which has a slower service rate than that in the busy period. This thesis is to study the performance measures, such as probability of the system being empty, mean queue size, system congestion rate and so on. At last, we give some numerical results to show the measures are affected by different parameters.
[1] Rudin, Walter.“Principles of Mathematical Analysis (International Series in Pure & Applied Mathematics).” 1976.
[2] De Kok, Antonius Gerlacus, and Hendrik Cornelis Tijms. “A queueing system with impatient customers.” Journal of Applied Probability Vol. 22, No. 3 , 688-696, 1985.
[3] Ross, Sheldon M.“Stochastic processes. 1996” 1996.
[4] Boots, Nam Kyoo, and Henk Tijms.“An M/M/c queue with impatient customers” Top Vol. 7, No. 2, 213-220, 1999.
[5] Garnett, Ofer, Avishai Mandelbaum, and Martin Reiman. “Designing a call center with impatient customers.” Manufacturing & Service Operations Management Vol. 4, No. 3 ,208-227, 2002.
[6] Medhi, Jyotiprasad. Stochastic models in queueing theory. Academic Press, 2002.
[7] Choi, Bong Dae, Bara Kim, and Jinmin Chung. “M/M/1 queue with impatient customers of higher priority.” Queueing Systems Vol. 38,49-66, 2001.
[8] Servi, Leslie D., and Steven G. Finn. “M/M/1 queues with working vacations (m/m/1/wv).” Performance Evaluation Vol. 50 , 41-52, 2002.
[9] Altman, Eitan, and Uri Yechiali. “Analysis of customers’impatience in queues with server vacations.” Queueing Systems Vol. 52, No. 4 , 261-279, 2006.
[10] Uri Yechiali. “Queues with system disasters and impatient customers when system is down.” Queueing Systems Vol. 56, 195-202, 2007.
[11] Li, Jihong, and Naishuo Tian. “The M/M/1 queue with working vacations and vacation interruptions.” Journal of Systems Science and Systems Engineering Vol. 16, No. 1, 121- 127, 2007.
[12] Gross, Donald. Fundamentals of queueing theory. John Wiley & Sons, 2008.
[13] Ross, Sheldon. A first course in probability. 2009.
[14] Sudhesh, R. “Transient analysis of a queue with system disasters and customer impatience.” Queueing systems Vol. 66, No. 1, 95-105, 2010.
[15] Perel, Nir, and Uri Yechiali. “Queues with slow servers and impatient customers.” European Journal of Operational Research Vol. 204, No.1 , 247-258, 2010.
[16] Dequan Yue, Wuyi Yue, and Gang Xu. “Analysis of customers’impatience in an M/M/1 queue with working vacations.” Journal of Industrial and Management Optimization Vol. 8, No. 4 , 895-908, 2012.
[17] Mandelbaum, Avishai, and Petar Momčilović. “Queues with many servers and impatient customers.” Mathematics of Operations Research Vol. 37, No.1, 41-65, 2012.
[18] Cinlar, Erhan. Introduction to stochastic processes. Courier Corporation, 2013.
[19] Baccelli, Francois, and Pierre Brémaud. Elements of queueing theory: Palm Martingale calculus and stochastic recurrences. Vol. 26. Springer Science & Business Media, 2013.
[20] Yue, Dequan, Wuyi Yue, and Guoxi Zhao. “Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server’s states.” Journal of Industrial and Management Optimization Vol. 12, No. 2 , 653-666, 2016.