| 研究生: |
游逸萱 Yu, Yi-Hsuan |
|---|---|
| 論文名稱: |
結合3D列印與剪力阻尼於撓性定位平台之設計與控制 Design and Control of a Polymer Compliant Stage with 3D Printing and Rubber Damping |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 撓性定位平台 、3D列印 、橡膠剪力阻尼 |
| 外文關鍵詞: | compliant stages, 3D printing, rubbers, damping |
| 相關次數: | 點閱:146 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
撓性平台一直在精密定位控制上扮演重要的角色,傳統上使用線切割加工製作,雖然以此方式加工得到性能上良好的表現,但仍有兩個問題需解決。一是無法達成輕量化的設計,二是使用的材料多為低阻尼材料,如此一來成為撓性定位平台亟需改善之目標。鑒於上述之問題,本論文以3D列印製作較複雜的幾何外型來達到撓性定位平台之輕量化,為了加強平台的動態表現,引入剪力阻尼的減振策略,對撓性平台之重點部位設計孔隙流道填入橡膠材料,達到提升材料阻尼之性能。進行平台的設計前,先對橡膠剪力阻尼的能力進行測試,掌握如何設計實用的結構以有效的發揮橡膠剪力阻尼的能力,利用測試的經驗與結果對平台設計,將平台與橡膠剪力阻尼結合,進行動態與性能測試。原始平台與橡膠阻尼增強平台的Simulink模擬結果顯示,較高阻尼係數的平台的確可抑制響應時的震盪現象,在控制實驗的響應中也觀察出此現象。在橡膠阻尼增強的平台中,以PID控制法控制之下,系統頻寬由35 Hz增加到80 Hz,安定時間從54.5ms縮減為26.5 ms,證明平台等效阻尼的大小將會影響平台運作的頻寬。本研究設計並實現一3D列印的撓性定位平台,並且應用橡膠剪力阻尼成功提升控制的性能。最後,本研究之終極目標為金屬3D列印印製撓性定位平台,金屬3D列印機可完成輕量化設計、更容易達成定位平台微尺寸的設計,使定位平台擁有好的負載能力,同時應用橡膠剪力阻尼後得到更佳的增強阻尼效果。
Compliant stages are critical subsystems in precision motion control applications. Traditionally, they are usually fabricated by using conventionally machining methods such as wire cutting of metallic structures. Although such an approach could yield excellent performance in many applications, it suffers from two major concerns, i.e., weight concern and low material damping, which represent major bottlenecks for further performance improvements. By incorporating with 3D printing technology, it is possible to carry out light weight design for significantly reducing the weight while maintaining the required stiffness. Meanwhile, by further introducing shear damper-liked concept such as liquid elastomer materials in key locations, it is possible to improve the structural damping capability. In this work, a well-recognized compliant stage, serving as the platform, is designed and realized by using plastic 3D printing and liquid PDMS casting for investigating the feasibility of the above concept. Essential performance and dynamic tests are conducted to examine the functional performance and dynamic characteristics of the stage. The preliminary characterization results indicate that with proper design, the functional performance of the plastic stage can actually be comparable with those of wire cut metallic stages. Meanwhile, the enhancement of damping strongly depends on rubber injected position. Rubbers must be added in the portions where strong elastic deformations are expected for improving the damping capability. Finally, a closed-loop positioning control of the stage comprising an AVM30-15 voice coil motor, an YP05MGVL-P24 laser displacement sensor, and proportional–integral–derivative controller, is investigated for demonstrating the performance of 3D-printed compliant stage under control. Signal- processing for the entire system is performed under an NI cRIO-9014 LabVIEW FPGA real-time controller. In comparison with original compliant stage, the settling time is reduced from 54.5 ms to 26.5 ms, and the bandwidth is increased from 35 Hz to 80 Hz with rubber damping. Although primitive, the study shows promising results for continuing future more comprehensive studies in future stage designs using both plastic and metallic 3D printings.
[1] “Automatic Optimal Inspection Machine, TRT Innovation.” [Online]. Available: http://www.tri.com.tw/cht/index.aspx.
[2] “QC Inspection Services, Inc.” [Online]. Available: http://www.qcinspect.com/coursedesc_CMMprogramming.htm.
[3] K. S. Chen, D. L. Trumper, and S. T. Smith, “Design and control for an electromagnetically driven X-Y-θ stage,” Precis. Eng., vol. 26, no. 4, pp. 355–369, 2002.
[4] 李哲維, 堆疊式壓電雙軸精密定位平台之設計、分析與控制, 國立成功大學機械工程學系碩士論文, 2012.
[5] C. A. M. Verbaan, P. C. J. N. Rosielle, and M. Steinbuch, “Broadband damping of non-rigid-body resonances of planar positioning stages by tuned mass dampers,” Mechatronics, vol. 24, no. 6, pp. 712–723, 2014.
[6] C. Zhong, C. Guisheng, and Z. Xianmin, “Leaf Flexure Hinge with Damping Layers : Theoretical Model and Experiments,” no. 2012, pp. 27–31, 2014.
[7] L. Cremer, M. Heckl, and P. D. B. A. T. Petersson, Structure-Borne Sound. New York: Springer Berlin Heidelberg, 1988.
[8] E. R. Marsh and A. H. Slocum, “An Integrated Approach to Structural Damping,” Am. Ind. Hyg. Assoc. J., vol. 33, no. 1, pp. 1–11, 1972.
[9] 王維志, 具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制, 國立成功大學機械工程學系碩士論文, 2010.
[10] 林佩君, 雙軸式材料測試系統之設計與實現及其在橡膠軸承之應用, 國立成功大學機械工程學系碩士論文, 2013.
[11] 鄧諺舉, 新型橡膠軸承一維定位平台之分析、設計、控制, 國立成功大學機械工程學系碩士論文, 2015.
[12] S. S. Rao, Mechanical Vibrations. Pearson, 2011.
[13] L. L. Howell., Compliant Mechanisms. Wiley Publication, 2001.
[14] S. H. Chang, C. K. Tseng, and H. C. Chien, “An Ultra-Precision XY θ(z) Piezo-Micropositioner Part I : Design and Analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 4, pp. 897–905, 1999.
[15] J. W. Ryu, D.-G. Gweon, and K. S. Moon, “Optimal design of a flexure hinge based XYφ wafer stage,” Precis. Eng., vol. 21, no. 97, pp. 18–28, 1997.
[16] J. M. Paros and L. Weisbord, “How to Design Flexure Hinges,” Mach. Des., vol. 37, pp. 151–156, 1965.
[17] K. B. Choi, J. J. Lee, and S. Hata, “A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel,” Sensors Actuators, A Phys., vol. 161, no. 1–2, pp. 173–181, 2010.
[18] M. Tanaka, “The dynamic properties of a monolithic mechanism with notch flexure hinges for precision control of orientation and position,” Japan Appl. Phys., vol. 193, no. 22, pp. 193–200., 1983.
[19] D. R. Tobergte and S. Curtis, “A Linear Scheme for the Displacement Analysis of Micropositioning Stages with Flexure Hinges,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.
[20] 簡宏彰, 三自由度超精密微定位平臺之研究, 台灣大學機械工程學系碩士論文, 1996.
[21] Y. Li and Q. Xu, “Design and Analysis of a Totally Decoupled,” vol. 25, no. 3, pp. 645–657, 2009.
[22] N. Lass, L. Riegger, R. Zengerle, and P. Koltay, “Enhanced liquid metal micro droplet generation by pneumatic actuation based on the starjet method,” Micromachines, vol. 4, no. 1, pp. 49–66, 2013.
[23] F. Pati, J. H. Shim, J. S. Lee, and D. W. Cho, “3D printing of cell-laden constructs for heterogeneous tissue regeneration,” Manuf. Lett., vol. 1, no. 1, pp. 49–53, 2013.
[24] U. Yaman, N. Butt, E. Sacks, and C. Hoffmann, “Slice coherence in a query-based architecture for 3D heterogeneous printing,” CAD Comput. Aided Des., vol. 75–76, pp. 27–38, 2016.
[25] 林鼎勝, 發展現況. 2014.
[26] 張國鎮, 黃鎮興, 蘇晴茂, 李森枂, 結構消能減震控制及隔震設計. 全華科技圖書, 2004.
[27] 陳怡婷, 高科技廠房耐震能力初步評估與補強方法, 國立交通大學土木工程學系碩士論文, 2006.
[28] 吳俞慶, 液流阻尼器之結構控制分析, 國立成功大學土木工程學系碩士論文, 2011.
[29] A. H. Slocum, E. R. Marsh, and D. Smith, Replicated-in-place internal viscous shear damper for machine structures and components. 1998.
[30] E. R. Marsh, “Damping of Flexural Waves With Imbedded Viscoelastic Materials,” vol. 120, pp. 188–193, 1998.
[31] M. N. Ozisik, Heat Transfer: A Basic Approach. New York: Mcgraw-Hill College, 1985.
[32] T. Pritz, “Loss factor peak of viscoelastic materials: magnitude to width relations,” J Sound Vib, vol. 246, pp. 265–280, 2001.
[33] Y. Li and Q. Xu, “A Novel Piezoactuated XY Stage With Parallel , Decoupled , and Stacked Flexure Structure for Micro-/Nanopositioning,” vol. 58, no. 8, pp. 3601–3615, 2011.
[34] Y. K. Yong, T. Lu, and D. C. Handley, “Review of circular flexure hinge design equations and derivation of empirical formulations,” vol. 32, pp. 63–70, 2008.
[35] S. T. Smith, D. G. Chetwynd, and D. K. Bowen, “Design and assessment of monolithic high precision translation mechanisms,” J Phys E, vol. 977, no. 20, pp. 977–83, 1987.
[36] 張碩, 自動控制系統. 台北: 鼎茂圖書, 2001.