研究生: |
謝旻益 Xie, Min-Yi |
---|---|
論文名稱: |
逆擴展有限元素法應用於損傷結構健康監測 An Inverse Extended Finite Element Method for Damaged Structural Health Monitoring |
指導教授: |
戴名駿
Dai, Ming-Jyun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 逆擴展有限元素法 、結構健康監測 、破壞力學 、水平集方法 、增強形狀函數 |
外文關鍵詞: | iXFEM, Structural health monitoring, Fracture mechanics, Level set method, Enriched shape function |
相關次數: | 點閱:33 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構健康監測 (Structural Health Monitoring, SHM) 在確保工程結構之安全性與耐久性方面扮演關鍵角色。近年來,逆有限元素法 (Inverse Finite Element Method, iFEM) 已廣泛應用於各類SHM領域。然而,傳統iFEM模型在監測應力集中與結構奇異行為時仍面臨顯著挑戰。為此,本研究提出一種創新的逆擴展有限元素法 (Inverse Extended Finite Element Method, iXFEM),以應用於含強不連續與弱不連續損傷結構之健康監測。所提出的iXFEM方法將水平集方法 (Level set method) 與增強形狀函數 (Enriched shape functions) 引入iFEM架構中,藉以提升其對幾何與材料不連續性之解析能力。此外,本研究亦探討於在iXFEM架構下引入h-與p-局部網格加密技術,以提升應力集中區域之解析精度。透過多個裂縫、挖孔、夾雜物以及雙重材料平板的數值分析,驗證iXFEM能在使用有限數量應變感測器的情況下,有效監測結構與破壞響應,顯示iXFEM在SHM應用中的高度潛力。
Structural Health Monitoring (SHM) plays a critical role in ensuring the safety and durability of engineering structures. In recent years, the Inverse Finite Element Method (iFEM) has been widely applied across various SHM domains. However, conventional iFEM models still face significant challenges in capturing stress concentrations and singular behaviors. To address these limitations, this study proposes a novel Inverse Extended Finite Element Method (iXFEM) tailored for monitoring structural health in systems exhibiting strong and weak discontinuities. The proposed iXFEM framework integrates the level set method and enriched shape functions into the standard iFEM formulation, thereby enhancing its capability to model geometric and material discontinuities. Furthermore, this study explores the incorporation of local h- and p-refinement strategies within the iXFEM architecture to improve the resolution of stress fields in regions of high gradient or discontinuity. Through a series of numerical simulations involving cracked plate, hole, inclusion, and bi-material interface, the effectiveness of the iXFEM approach is validated. The results demonstrate that accurate reconstruction of structural and failure responses can be achieved using a limited number of strain sensors, emphasizing the significant potential of iXFEM for structural health monitoring.
[1] Tessler, A., Spangler, J.L. "A variational principle for reconstruction of elastic de-formation of shear deformable plates and shells." NASA/TM-2003212445, 2003.
[2] Tessler, A., Spangler, J.L. "A least-squares variational method for full-field recon-struction of elastic deformations in shear-deformable plates and shells." Comput. Meth-ods Appl. Mech. Eng., vol. 194 (2), pp. 327–339, 2005.
[3] Zhao, F., Guo, Y., Bao, H., Wang, W., Zhang, F. "Shape sensing modeling of timo-shenko beam based on the strain gradient theory and iFEM method." Acta Mech. Sin., vol. 39, 423039, 2023.
[4] Zhao, F., Guo, Y., Bao, H. "Shape sensing of the thin-walled beam members by coupling an inverse finite element method with a refined quasi-3D zigzag beam theory." Thin-Walled Struct., vol. 202, 112127, 2024a.
[5] Kefal, A., Oterkus, E., Tessler, A., Spangler, J.L. "A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring." Eng. Sci. Technol. Int J., vol. 19 (3), pp. 1299–1313, 2016.
[6] Kefal, A. "An efficient curved inverse-shell element for shape sensing and structural health monitoring of cylindrical marine structures." Ocean Eng., vol. 188, 106262, 2019.
[7] Kefal, A., Oterkus, E. "Displacement and stress monitoring of a chemical tanker based on inverse finite element method." Ocean Eng., vol. 112, pp. 33–46, 2016.
[8] Kefal, A., Oterkus, E. "Displacement and stress monitoring of a Panamax containership using inverse finite element method." Ocean Eng., vol. 119, pp. 16–29, 2016.
[9] Kefal, A., Mayang, J.B., Oterkus, E., Yildiz, M. "Three dimensional shape and stress monitoring of bulk carriers based on iFEM methodology." Ocean Eng., vol. 147, pp. 256–267, 2018.
[10] Li, M., Kefal, A., Cerik, B., Oterkus, E. "Structural Health Monitoring of Submarine Pressure Hull using Inverse Finite Element Method." CRC Press, London, 2019.
[11] Li, M., Kefal, A., Oterkus, E., Oterkus, S. "Structural health monitoring of an offshore wind turbine tower using iFEM methodology." Ocean Eng., vol. 204, 107291, 2020.
[12] Li, M., Dirik, Y., Oterkus, E., Oterkus, S. "Shape sensing of NREL 5MW offshore wind turbine blade using iFEM methodology." Ocean Eng., vol. 273, 114036., 2023.
[13] Ghasemzadeh, M., Mokhtari, M., Bilgin, M.H., Kefal, A. "Pitting corrosion identification approach based on inverse finite element method for marine structure applications." Ocean Eng., vol. 273, 113953, 2023.
[14] Colombo, L., Sbarufatti, C., Giglio, M. "Definition of a load adaptive baseline by inverse finite element method for structural damage identification." Mech. Syst. Signal Process., vol. 120, pp. 584–607, 2019.
[15] Li, M., Kefal, A., Cerik, B., Oterkus, E. "Dent damage identification in stiffened cylindrical structures using inverse finite element method." Ocean Eng., vol. 198, 106944, 2020.
[16] Li, T., Cao, M., Li, J., Yang, L., Xu, H., Wu, Z. "Structural damage identification based on integrated utilization of inverse finite element method and pseudo-excitation approach." Sensors, vol. 21 (2), 606, 2021.
[17] Roy, R., Gherlone, M., Surace, C., Tessler, A. "Full-field strain reconstruction using uniaxial strain measurements: application to damage detection." Appl. Sci., vol. 11 (4), 1681, 2021.
[18] Oboe, D., Poloni, D., Sbarufatti, C., Giglio, M. "Towards automatic crack size estimation with iFEM for structural health monitoring." Sensors vol. 23 (7), 3406, 2023.
[19] Ganjdoust, F., Kefal, A., Tessler, A. "A novel delamination damage detection strategy based on inverse finite element method for structural health monitoring of composite structures." Mech. Syst. Signal Process., vol. 192, 110202, 2023.
[20] Belur, M.Y., Kefal, A., Abdollahzadeh, M.A., Fassois, S.D. "Damage diagnosis of plates and shells through modal parameters reconstruction using inverse finite-element method." Struct. Health Monit., 2024. Accepted
[21] Zhao, L., You, R., Ren, L. "Inverse finite element method and support vector regres-sion for automated crack detection with OFDR-distributed fiber optic sensors." Mea-surement, vol. 234, 114916, 2024.
[22] Kefal, A., Diyaroglu, C., Yildiz, M., Oterkus, E. "Coupling of peridynamics and inverse finite element method for shape sensing and crack propagation monitoring of plate structures." Comput. Methods Appl. Mech. Eng., vol. 391, 114520, 2022.
[23] Li, M., Oterkus, E., Oterkus, S. " A two-dimensional inverse crack tip element for shape sensing and structural health monitoring." Ocean Eng., vol. 289, 116287, 2023.
[24] Kefal, A., Bilgin, M.H., Kendibilir, A. "Particle inverse method for full-field displacement and crack propagation monitoring from discrete sensor measurements." Comput. Methods Appl. Mech. Eng., vol. 432, 117369, 2024.
[25] Belytschko, T., Black, T. "Elastic crack growth in finite elements with minimal remeshing." Int. J. Numer. Meth. Eng., vol. 45, pp. 601–620, 1999.
[26] Moës, N., Dolbow, J., Belytschko, T. "A finite element method for crack growth without remeshing." Int. J. Numer. Meth. Eng., vol. 46, pp. 131–150, 1999.
[27] Sukumar, N., Moës, N., Moran, B., Belytschko, T. "Extended finite element method for three-dimensional crack modelling." Int. J. Numer. Meth. Eng., vol. 48, pp. 1549–1570, 2000.
[28] Dolbow, J., Moës, N., Belytschko, T. "Modeling fracture in Mindlin–Reissner plates with the extended finite element method." Int. J. Solids Struct., vol. 37, pp. 7161–7183, 2000.
[29] Stolarska, M., Chopp, D. L., Moës, N., Belytschko, T. "Modelling crack growth by level sets in the extended finite element method." Int. J. Numer. Meth. Eng., vol. 51, pp. 943–960, 2001.
[30] Sukumar, N., Chopp, D. L., Moës, N., Belytschko, T. "Modeling holes and inclusions by level sets in the extended finite-element method." Int. J. Numer. Meth. Eng., vol. 51, pp. 987–1005, 2001.
[31] Rege, K., Lemu, H. G. "A review of fatigue crack propagation modelling techniques using FEM and XFEM." IOP Conf. Ser.: Mater. Sci. Eng., vol. 276, 012027, 2017.
[32] Yazid, A., Abdelkader, N., Hamouine, A. "A state-of-the-art review of the X-FEM for computational fracture mechanics." Appl. Math. Model., vol. 33, pp. 4269–4282, 2009.
[33] Zangmeister, T., Andrä, H., Müller, R. "Comparison of XFEM and voxel-based FEM for the approximation of discontinuous stress and strain at material interfaces." Tech. Mech., vol. 33, no. 2, pp. 131–141, 2013.
[34] Babuška, I., Guo, B. Q. "The h, p and h-p version of the finite element method: basis theory and applications. " Adv. Eng. Softw., vol. 15, pp. 159–174, 1992.
[35] Henrard, P., Réthoré, J., Hild, F., Roux, S. "Combining mesh refinement and XFEM for fracture mechanics simulations: contradiction or strength?" Computational Mechanics, vol. 70, pp. 727–743, 2022.
[36] Wang, Z., Xu, J., Wu, H., Liu, Y., & Zuo, Z. "3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks." Comput. Methods Appl. Mech. Engrg., vol. 313, pp. 375–405, 2017.
[37] Ding, J., Yu, T., & Bui, T. Q. "Modeling strong/weak discontinuities by local mesh refinement variable-node XFEM with object-oriented implementation." Theor. Appl. Fract. Mech., vol. 106, 102434, 2020.
[38] Kefal, A., Tessler, A., & Oterkus, E. "An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures." Compos. Struct., vol. 168, pp. 241–257, 2017.
[39] ANSYS. "Mechanical User’s Guide." ANSYS, Inc., 2023
[40] Jena, J., Singh, I.V., Gaur, V. "A numerical study of semipermeable cracks in magneto-electro-elastic material using XFEM." Eng. Fract. Mech., vol. 275, 108817, 2022.
[41] Rosero, D. G., Zsaki, A. M. "Finite element mesh improvement using an a priori local p-refinement for stress analysis of underground excavations." Cogent Eng., vol. 7, 1769287, 2020.