| 研究生: |
游鎰謙 You, Yi-Qian |
|---|---|
| 論文名稱: |
探討DNA修復酵素NTHL1在帕金森小鼠模式中扮演的角色 Examining if DNA repairing glycosylase NTHL1 plays a role in MPTP-induced Parkinson's disease mice model |
| 指導教授: |
陳珮君
Chen, Pei-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 紋狀體 、黑質 、帕金森氏病症 、氧化誘導的 DNA 損傷 、DNA糖基化酶 、核因子紅系2相關因子2 、nth DNA糖基化酶 |
| 外文關鍵詞: | striatum (STR), substantia nigra (SN), Oxidatively induced DNA damage, DNA glycosylase, nth like DNA glycosylase 1 (NTHL1), Nuclear factor erythroid 2-related factor 2 (Nrf2), Parkinson's disease (PD) |
| 相關次數: | 點閱:124 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帕金森氏症是一種漸進性退化神經系統疾病,會影響人類運動能力,其臨床特徵包括運動和非運動症狀,例如運動遲緩、僵硬、認知或神經行為異常。在帕金森氏症中觀察到的病理特徵包括神經元死亡、神經元外神經黑色素和黑質反應性神經膠質增生。 帕金森氏症主要是由黑質中多巴胺神經元的死亡引起的,但導致多巴胺神經元死亡的確切機制仍不清楚。活性氧類的產生是帕金森氏症的致病因素之一,其因由線粒體功能障礙和多巴胺代謝產生。線粒體功能障礙的原因之一是DNA損傷。DNA中的氧化損傷主要可以通過鹼基切除修復途徑修復,一些證據表明鹼基切除修復途徑可以防止各種環境中的神經毒性。 DNA糖基化酶NTHL1,在線粒體和細胞核中啟動鹼基切除修復途徑的定位和功能。核因子紅細胞2相關因子2 (NRF2)是最重要的氧化反應調節因子之一。越來越多的證據表明NRF2與神經退化性疾病之間存在聯繫。 NRF進入細胞核並與抗氧化反應元件 (ARE) 結合,然後調節細胞保護基因。因此,我們使用單甲基富馬酸 (MMF)增加NRF2調節的抗氧化基因的表達來治療MPTP誘發的PD模型。綜合上面所述,我們發現 NTHL1-/-的小鼠對MPTP的敏感性高於WT小鼠。此外,MMF治療降低了 MPTP 在 NTHL1-/- PD 模型中的毒性。
Parkinson's disease (PD) is a progressive nervous system disorder that affects human motor abilities. The clinical features of PD include motor and non-motor symptoms, such as bradykinesia, rigidity, cognitive or neurobehavioral abnormalities. And the pathological characteristics observed in PD contain neuronal loss, extraneuronal neuromelanin pigment, and reactive gliosis in the substantia nigra (SN). PD is induced mainly by the loss of dopaminergic (DAnergic) neurons in the substantia nigra, yet the exact mechanism that leads to the loss of dopaminergic neurons is still unclear. Reactive oxygen species (ROS) production is one of the causative factors in PD. ROS can be generated by mitochondrial dysfunction and dopamine metabolism. One of the reasons for mitochondrial dysfunction is DNA damage. Oxidative damage in DNA can be repaired primarily via the Base Excision Repair (BER) pathway, and some evidence has shown that BER prevents neurotoxicity in a variety of milieus. The DNA glycosylases, including nth like DNA glycosylase 1 (NTHL1), initiate BER localization and function in mitochondria and the nucleus. Nuclear factor erythroid 2-related factor 2 (Nrf2) is one of the most important oxidative stress regulators. And there is increasing evidence showing the connection between Nrf2 and neurodegenerative disease. Nrf2 enters nuclear and binds to antioxidant response element (ARE), then regulates cytoprotective genes. Therefore, MPTP-injected mice were cotreated with monomethyl fumarate (MMF) to increase Nrf2 and its downstream gene expression. To sum up the above results, we found that NTHL1-/- mice showed higher sensitivity to MPTP than WT mice. Besides, MMF treatment reduces the toxicity of MPTP in NTHL1-/- PD model.
Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., Greenamyre, J.T., 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature neuroscience 3, 1301-1306.
Brichta, L., Greengard, P., 2014. Molecular determinants of selective dopaminergic vulnerability in Parkinson's disease: an update. Front Neuroanat 8, 152.
Carling, D., 2005. AMP-activated protein kinase: balancing the scales. Biochimie 87, 87-91.
Chao, R.Y., Cheng, C.H., Wu, S.N., Chen, P.C., 2018. Defective trafficking of Kv2.1 channels in MPTP-induced nigrostriatal degeneration. J Neurochem 144, 483-497.
Cheng, H.C., Ulane, C.M., Burke, R.E., 2010. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67, 715-725.
Cheung, P.C., Salt, I.P., Davies, S.P., Hardie, D.G., Carling, D., 2000. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346 Pt 3, 659-669.
Cooke, M.S., Evans, M.D., Dizdaroglu, M., Lunec, J., 2003. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17, 1195-1214.
Crute, B.E., Seefeld, K., Gamble, J., Kemp, B.E., Witters, L.A., 1998. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 273, 35347-35354.
Damier, P., Hirsch, E.C., Agid, Y., Graybiel, A.M., 1999. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122 ( Pt 8), 1437-1448.
Duda, J., Potschke, C., Liss, B., 2016. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. Journal of neurochemistry 139 Suppl 1, 156-178.
Fernagut, P.O., Diguet, E., Labattu, B., Tison, F., 2002. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods 113, 123-130.
Feve, A.P., 2012. Current status of tyrosine hydroxylase in management of Parkinson's disease. CNS & neurological disorders drug targets 11, 450-455.
Fryer, L.G., Carling, D., 2005. AMP-activated protein kinase and the metabolic syndrome. Biochem Soc Trans 33, 362-366.
Green, D.R., Galluzzi, L., Kroemer, G., 2014. Cell biology. Metabolic control of cell death. Science (New York, N.Y.) 345, 1250256.
Guyenet, S.J., Furrer, S.A., Damian, V.M., Baughan, T.D., La Spada, A.R., Garden, G.A., 2010. A simple composite phenotype scoring system for evaluating mouse models of cerebellar ataxia. J Vis Exp, 1787.
Han, Y., Wang, Q., Song, P., Zhu, Y., Zou, M.H., 2010. Redox regulation of the AMP-activated protein kinase. PLoS One 5, e15420.
Henchcliffe, C., Beal, M.F., 2008. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature clinical practice. Neurology 4, 600-609.
Jacobs, A.L., Schar, P., 2012. DNA glycosylases: in DNA repair and beyond. Chromosoma 121, 1-20.
Joshi, G., Johnson, J.A., 2012. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7, 218-229.
Kaminskyy, V.O., Zhivotovsky, B., 2014. Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal 21, 86-102.
Katsube, T., Mori, M., Tsuji, H., Shiomi, T., Wang, B., Liu, Q., Nenoi, M., Onoda, M., 2014. Most hydrogen peroxide-induced histone H2AX phosphorylation is mediated by ATR and is not dependent on DNA double-strand breaks. Journal of biochemistry 156, 85-95.
Keeney, P.M., Xie, J., Capaldi, R.A., Bennett, J.P., Jr., 2006. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 5256-5264.
Kemp, B.E., Stapleton, D., Campbell, D.J., Chen, Z.P., Murthy, S., Walter, M., Gupta, A., Adams, J.J., Katsis, F., van Denderen, B., Jennings, I.G., Iseli, T., Michell, B.J., Witters, L.A., 2003. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31, 162-168.
Kim, Y.J., Wilson, D.M., 3rd, 2012. Overview of base excision repair biochemistry. Curr Mol Pharmacol 5, 3-13.
Kraytsberg, Y., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W., Khrapko, K., 2006. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nature genetics 38, 518-520.
Krokan, H.E., Bjørås, M., 2013. Base excision repair. Cold Spring Harbor perspectives in biology 5, a012583.
Krokan, H.E., Standal, R., Slupphaug, G., 1997. DNA glycosylases in the base excision repair of DNA. Biochem J 325 ( Pt 1), 1-16.
Kuo, Y.Y., Lin, Y.C., Calkins, M.J., Chen, P.C., 2020. Endonuclease VIII-like 1 deficiency impairs survival of newly generated hippocampal neurons and memory performance in young-adult male mice. Life Sci 254, 117755.
Lanciego, J.L., Luquin, N., Obeso, J.A., 2012. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2, a009621.
Luo, S.X., Huang, E.J., 2016. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. Am J Pathol 186, 478-488.
Magrinelli, F., Picelli, A., Tocco, P., Federico, A., Roncari, L., Smania, N., Zanette, G., Tamburin, S., 2016. Pathophysiology of Motor Dysfunction in Parkinson's Disease as the Rationale for Drug Treatment and Rehabilitation. Parkinsons Dis 2016, 9832839.
Mann, V.M., Cooper, J.M., Daniel, S.E., Srai, K., Jenner, P., Marsden, C.D., Schapira, A.H., 1994. Complex I, iron, and ferritin in Parkinson's disease substantia nigra. Annals of neurology 36, 876-881.
Marechal, A., Zou, L., 2013. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5.
Meredith, G.E., Rademacher, D.J., 2011. MPTP mouse models of Parkinson's disease: an update. J Parkinsons Dis 1, 19-33.
Narciso, L., Parlanti, E., Racaniello, M., Simonelli, V., Cardinale, A., Merlo, D., Dogliotti, E., 2016. The Response to Oxidative DNA Damage in Neurons: Mechanisms and Disease. Neural Plast 2016, 3619274.
Nutt, J.G., Carter, J.H., Sexton, G.J., 2004. The dopamine transporter: Importance in Parkinson's disease. Annals of neurology 55, 766-773.
Petrillo, S., Schirinzi, T., Di Lazzaro, G., D'Amico, J., Colona, V.L., Bertini, E., Pierantozzi, M., Mari, L., Mercuri, N.B., Piemonte, F., Pisani, A., 2020. Systemic activation of Nrf2 pathway in Parkinson's disease. Mov Disord 35, 180-184.
Prakash, A., Doublie, S., Wallace, S.S., 2012. The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage. Prog Mol Biol Transl Sci 110, 71-91.
Przedborski, S., Tieu, K., Perier, C., Vila, M., 2004. MPTP as a mitochondrial neurotoxic model of Parkinson's disease. Journal of bioenergetics and biomembranes 36, 375-379.
Schapira, A.H., 2008. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. The Lancet. Neurology 7, 97-109.
Schieber, M., Chandel, N.S., 2014. ROS function in redox signaling and oxidative stress. Curr Biol 24, R453-462.
Soong, N.W., Hinton, D.R., Cortopassi, G., Arnheim, N., 1992. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature genetics 2, 318-323.
Stein, S.C., Woods, A., Jones, N.A., Davison, M.D., Carling, D., 2000. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345 Pt 3, 437-443.
Sugimoto, H., Kawakami, K., 2019. Low-cost Protocol of Footprint Analysis and Hanging Box Test for Mice Applied the Chronic Restraint Stress. J Vis Exp.
Svenningsson, P., Nishi, A., Fisone, G., Girault, J.A., Nairn, A.C., Greengard, P., 2004. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44, 269-296.
Vartanian, V., Lowell, B., Minko, I.G., Wood, T.G., Ceci, J.D., George, S., Ballinger, S.W., Corless, C.L., McCullough, A.K., Lloyd, R.S., 2006. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci U S A 103, 1864-1869.
Vartanian, V., Minko, I.G., Chawanthayatham, S., Egner, P.A., Lin, Y.C., Earley, L.F., Makar, R., Eng, J.R., Camp, M.T., Li, L., Stone, M.P., Lasarev, M.R., Groopman, J.D., Croy, R.G., Essigmann, J.M., McCullough, A.K., Lloyd, R.S., 2017. NEIL1 protects against aflatoxin-induced hepatocellular carcinoma in mice. Proc Natl Acad Sci U S A 114, 4207-4212.
Vila, M., Ramonet, D., Perier, C., 2008. Mitochondrial alterations in Parkinson's disease: new clues. Journal of neurochemistry 107, 317-328.
Whitaker, A.M., Schaich, M.A., Smith, M.R., Flynn, T.S., Freudenthal, B.D., 2017. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 22, 1493-1522.
Woods, A., Salt, I., Scott, J., Hardie, D.G., Carling, D., 1996. The alpha1 and alpha2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett 397, 347-351.
Wu, S.B., Wu, Y.T., Wu, T.P., Wei, Y.H., 2014. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta 1840, 1331-1344.