簡易檢索 / 詳目顯示

研究生: 黃國維
Huang, Guo-Wei
論文名稱: 臺灣地區天頂向對流層延遲量預測短期夏季降雨可行性評估
Assessment of short-term Precipitation Forecasting Using Zenith Tropospheric Delay in Taiwan Summer
指導教授: 陳佳宏
Chen, Chia-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 61
中文關鍵詞: 全球定位系統天頂向對流層延遲量水氣監測
外文關鍵詞: Water Vapor,, Zenith Tropospheric Delay, GPS
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大氣中水氣(Water vapor)的量測,對於氣象、氣候模式的準確性有舉足輕重的影響力,過去在水氣資訊的取得上,多使用空間解析度與時間解析度低的探空氣球,或是運行與保養成本較昂貴的水氣輻射儀(Water Vapour Radiometers, WVRs)。近幾年更可利用GPS 訊號反推大氣的水氣含量(Bevis,1992)。
    GPS訊號在經過大氣層時會產生時間上的延遲,一般延遲量分為對流層延遲與電離層延遲,後者可透過無電離層線性組合來消除,本研究利用GAMIT 10.7進行天頂向對流層延遲量 (Zenith Tropospheric Delay, ZTD)的解算。對流層延遲量可分為靜力延遲與濕延遲,前者雖然佔總延遲量約90%,但其日變化幅度約僅介於0.1%至0.2%之間,很少有超過0.5%變化幅度的情況,後者則與大氣中所含的水氣量幾乎成比例,佔總延遲量雖約只有10%,但可在一天內達50%至100%的變化幅度。因此本論文利用ZTD的變化貢獻來源主要為濕延遲量的特性,來做進一步的研究。
    本研究演算法透過一定的ZTD上升斜率門檻與固定值門檻來生成預估接下來三小時內會發生降雨的預測點,並與實際雨量做統計與定性分析。由事件一長時間ZTD對比單站累積雨量的結果來看,山區並不適用於本研究的預測方法,這是因為地勢較高的地區多了地形抬升作用以及因氣溫較低導致達飽和所需的水氣較其他地勢平坦的測站少的原故。配合事件二臺灣本島168個GPS站與507個氣象站的統計結果發現,3小時內達5mm/hr的ZTD斜率門檻有最好的結果。在進行定性分析後發現,東部與高山區預測點多有誤判、高估的情況發生,說明本研究的預測方法亦不適用於東部地區。研究指出在非東部與接近山區的區域,利用一定門檻的ZTD變化來作為一種監測水氣短期充足與否甚至其動向的工具是可行的。

    When Global Positioning System (GPS) signals travel through the atmosphere and the ionosphere, the signal velocities will be delayed due to the medium change. These delays in troposphere in the zenith direction, namely zenith tropospheric delays (ZTD), can be divided into hydrostatic (dry) and wet components, which are called ZHD (zenith hydrostatic delay) and ZWD (zenith wet delay), respectively. The wet delay is proportional to the water vapor along the signal path (Hogg et al.1981; Askne and Nordius 1987).
    Since the variation of ZHD is relatively small than that of ZWD, in this study, we consider the variation of GPS-derived ZTD is mainly controlled by the ZWD. By using the increasing slope and the pass-threshold value of ZTD, a prediction point of precipitation is obtained to represent the possibility of rainfall. We investigated two different kinds of cases to assess the feasibility of applying ZTD on short-term rainfall events. For case 1, we chose 5 GPS stations in Taiwan that are separated widely during July and August 2018 for the long-term time series analysis. Results show that about 70% rainfall events are located within the GPS-derived ZTD prediction range except those events occurred at the high-altitude area. For case 2, 178 GPS stations and 168 meteorological stations were chosen to analyse the spatial statistics and the qualitative analysis. Results show the totally good agreement of ZTD prediction area and the rainfall area, but still have some overestimation of prediction points around the east side of Taiwan where is the lee side of Prevailing wind in summer. According to our results from these 2 rainfall events, the GPS-derived ZTD is feasible for the water vapor monitoring.

    目錄 一、緒論 1 1-1、論文架構 1 1-2、研究背景與前人文獻 2 1-3、研究動機與目的 4 二、理論介紹 5 2-1、GPS衛星定位原理 5 2-1-1、虛擬距離觀測 5 2-1-2、載波相位觀測 7 2-1-3、觀測誤差來源 8 2-2、GPS氣象學 10 2-2-1、電離層延遲 11 2-2-2、對流層延遲 11 2-2-3、對流層延遲求解 15 三、研究資料介紹與處理流程 18 3-1、兩研究事件的資料來源與分布 18 3-2、GPS資料解算軟體介紹 23 3-3、解算資料驗證結果 26 3-4、氣象站資料處理 28 3-5、列聯表 29 四、研究成果與討論 30 4-1、參數定義與統計方法 30 4-2、事件一結果與分析 32 4-2-1、嘉義45站與玉山站資料時間序列 32 4-2-2、嘉義站與玉山站統計結果 34 4-3、事件二結果與分析 36 4-3-1、雨量時間序列與靈敏度統計 36 4-3-2、事件二定性分析 41 五、結論 51 參考文獻 52 附錄一 55 附錄二 56

    王信閎 (2017),1994~2014年間台灣地區GPS大氣可降水量與太平洋年代際振盪之
    關係,成功大學地球科學研究所碩士論文。

    曾子榜 (2018),以 GPS 天頂向總延遲量預估大豪雨之可行性評估,中華水土保持
    學報, 49(4): 233-242(2018)

    葉大綱、龎士鈞、蕭棟元、洪景山 (2017) ,驗證 GPS 衛星訊號反演之大氣可降水
    量﹐國土測繪與空間資訊,5(1),68-81。

    Askne, J., and H. Nordius (1987), Estimation of tropospheric delay for microwaves from surface weather data, Radio Sci., 22(3), 379–386, doi:10.1029/RS022i003p00379.

    Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97(D14), 15787–15801, doi:10.1029/92JD01517.

    Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware (1994), GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteor., 33(3), 379–386, doi:10.1175/1520-0450(1994)033 < 0379: GMMZWD > 2.0.CO;2.

    Herring, T. & King, Robert & Mcclusky, Simon. (2008). Introduction to GAMIT.

    Hsu, Y. J., S. B. Yu, M. Simons, L. C. Kuo, and H. Y. Chen (2009), Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479, 4-18.

    Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., and Nilsson, T. (2013), GPT2: Empirical slant delay model for radio space geodetic techniques, Geophys. Res. Lett., 40, 1069– 1073, doi:10.1002/grl.50288.

    Hsiao, Nai-Chi, Tzu-Wei Lin, Shu-Kun Hsu, Kai-Wei Kuo, Tzay-Chyn Shin, Peih-Lin Leu (2013), Improvement of earthquake locations with the Marine Cable Hosted Observatory (MACHO) offshore NE Taiwan. Marine Geophysical Research., doi: 10.1007/s11001-013-9207-3.
    Resch, G. M., Hogg, D. E., and Napier, P. J. (1984), Radiometric correction of atmospheric path length fluctuations in interferometric experiments, Radio Sci., 19(1), 411– 422, doi:10.1029/RS019i001p00411.

    Rocken, C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger (1993), Sensing atmospheric water vapor with the global positioning system, Geophys. Res. Lett., 20(23), 2631–2634, doi:10.1029/93GL02935.

    Saastamoinen, J. (1972), Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites, in The Use of Artificial Satellites for Geodesy, edited by S. W. Henriksen, Armandoncini, and B. H. Chovitz, pp. 247–251, American Geophysical Union.

    Shin, T. C., K. W. Kuo, P. L. Leu, C. H. Tsai, and J. S. Jiang, 2011: Continuous CWB GPS array in Taiwan and applications to monitoring seismic activity. Terr. Atmos. Ocean. Sci., 22, 521-533, doi: 10.3319/TAO.2011.05.18.01(T).

    Thayer, G. D. (1974), An improved equation for the radio refractive index of air, Radio Sci., 9(10), 803–807, doi:10.1029/RS009i010p00803.

    Tralli, D. M., T. H. Dixon, and S. A. Stephens (1988), Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the Global Positioning System, J. Geophys. Res., 93(B6), 6545–6557, doi:10.1029/JB093iB06p06545.

    Tregoning, Paul & Herring, T. (2006), Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophysical Research Letters - GEOPHYS RES LETT. 332. 10.1029/2006GL027706.

    Tregoning, Paul & Boers, Reinout & O'Brien, Denis & Hendy, Martin. (1998), Accuracy of Absolute Precipitable Water Vapor Estimates from GPS Observations. Journal of Geophysical Research. 1032. 28701-28710. 10.1029/98JD02516.

    Shin, Tzay-Chyn, Chien-Hsin Chang, Hsin-Chieh Pu*, Hsiao-Wei Lin, and Peih-Lin Leu (2013), The Geophysical Database Management System in Taiwan.

    Shin, Tzay-Chyn, Kai-Wen Kuo, Peih-Lin Leu, Chun-Hsiung Tsai, Juen-Shi Jiang (2011), NOTES AND CORRESPONDENCE Continuous CWB GPS Array in Taiwan and Applications to Monitoring Seismic Activity.
    Zhao, Q., Yao, Y., Yao, W. et al. (2018), Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting. Sci Rep 8, 7939, https://doi.org/10.1038/s41598-018-26299-3.

    下載圖示 校內:2024-09-14公開
    校外:2024-09-16公開
    QR CODE