| 研究生: |
邱繼億 Chiu, Chi-Yi |
|---|---|
| 論文名稱: |
設計與實現智慧城市應用之智慧交通號誌控制系統 Design and Implementation of a Smart Traffic Signal Control System for Smart City Applications |
| 指導教授: |
李威勲
Lee, Wei-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 車路聯網 、號誌控制 、智慧型運輸系統 、適應性號誌控制 、緊急車輛號誌搶先 、智慧城市 |
| 外文關鍵詞: | V2X, 802.11p, Vehicular Networks, Emergency Vehicle Signal Preemption, Adaptive Traffic Signal control, Intelligent Transportation Systems, Smart City |
| 相關次數: | 點閱:254 下載:55 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了減少擁擠的都市交通和提高公共運輸效率,支援智慧交通服務的基礎設施已經是智慧型運輸系統(Intelligent Transport System,ITS)的成功關鍵因素。例如歐盟執行委員會在2017年所發布的歐洲合作智慧型運輸系統(C-ITS)發展和運營政策就計畫於Phase II時發展車路聯網與交通事故告警推播的應用,相關發展智慧型運輸系統的應用還包含了對於公共運輸的大眾運輸號誌優先(Transit Signal Priority, TSP)、緊急車輛號誌搶先(Emergency Vehicle Signal Preemption, EVSP)、適應性號誌控制(Adaptive Traffic Signal Control, ATSC)等,這些應用被認為是一個可持續性發展的城市及智慧城市的重要指標之一。
在這些智慧型運輸系統的應用中,包含大眾運輸號誌優先、緊急車輛號誌搶先、適應性號誌控制、節能駕駛與道路安全應用,都需要透過車載端與路側端的協調控制(Coordinated Control)才能達到各項應用功能。然而現有的研究多半聚焦於單一智慧交通應用的最佳化,卻沒有討論多種應用的轉換與運作模式,因此導致未來在智慧交通的應用上可能會發生衝突問題。
本篇研究基於車載行動網路(Vehicular Network)技術,提出一套智慧交通控制系統(Smart Traffic Signal Control System, STSCS)的軟體與硬體架構,使系統可解決多種智慧交通應用衝突,並且提出緊急車輛號誌搶先之演算法與實作其功能。本系統可相容於現號誌控制器系統,讓相關智慧交通應用能夠真正落實於我國實際的路口上,使號誌設備成為多功能智慧化之路側設備,期望能帶領台灣邁向車路聯網時代。
Infrastructure supporting vehicular network (V2X) capability is the key factor to the success of smart city because it enables many smart transportation services. In order to reduce the traffic congestion and improve the public transport efficiency, many intelligent transportation systems (ITS) need to be developed.
In this paper, a smart traffic signal control (STSCS) system is designed and implemented, it supports several smart city transportation applications including emergency vehicle signal preemption (EVSP), public transport signal priority (TSP), adaptive traffic signal control (ATSC), Eco-driving supporting, and message broadcasting. The roadside unit (RSU) controller is the core of the proposed STSCS, where the system architecture, middleware, control algorithms, and peripheral modules are detailed discussed in this paper.
It is compatible with existed traffic signal controller so that it can be fast and cost-effectively deployed. A new trac signal scheme is specially designed for the EVSP scenario, it can inform all the drivers near the intersection regarding which direction the emergency vehicle (EV) is approaching, smoothing the traffic flow, and enhancing the safety. EVSP scenario and the related control algorithms are implemented in this work; integration test and field test are performed to demonstrate the STSCS.
Al-Dweik, A., Muresan, R., Mayhew, M., & Lieberman, M. (2017). IoT-based multifunctional scalable real-time enhanced road side unit for intelligent transportation systems. Paper presented at the 2017 IEEE 30th Canadian conference on electrical and computer engineering (CCECE).
Asaduzzaman, M., & Vidyasankar, K. (2017). A Priority Algorithm to Control the Traffic Signal for Emergency Vehicles. Paper presented at the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall).
Chen, S., Hu, J., Shi, Y., Peng, Y., Fang, J., Zhao, R., & Zhao, L. (2017). Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine, 1(2), 70-76.
Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2012). Automatic accident detection: Assistance through communication technologies and vehicles. IEEE Vehicular Technology Magazine, 7(3), 90-100.
Gartner, N. H. (1983). OPAC: A demand-responsive strategy for traffic signal control.
Hunt, P., Robertson, D., Bretherton, R., & Winton, R. (1981). SCOOT-a traffic responsive method of coordinating signals (0266-7045). Retrieved from
Jiang, D., & Delgrossi, L. (2008). IEEE 802.11 p: Towards an international standard for wireless access in vehicular environments. Paper presented at the VTC Spring 2008-IEEE Vehicular Technology Conference.
Kantawong, S., & Phanprasit, T. (2010). Intelligent traffic cone based on vehicle accident detection and identification using image compression analysis and RFID system. Paper presented at the Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on.
Lee, R. H., Ting, T., Lieberman, B., Tobias, D., Lolley, R., & Ho, Y. (1992). Regulation of retinal cGMP cascade by phosducin in bovine rod photoreceptor cells. Interaction of phosducin and transducin. Journal of Biological Chemistry, 267(35), 25104-25112.
Lee, W.-H., Chou, C.-M., Kuo, Y.-H., Hung, W.-L., & Chang, D.-W. (2017). Development of a Roadside Unit Middleware for Vehicular Ad-Hoc Network Based Intelligent Transportation Systems. 網際網路技術學刊, 18(6), 1431-1439.
Lee, W.-H., Hwang, K.-P., & Wu, W.-B. (2016). An intersection-to-intersection travel time estimation and route suggestion approach using vehicular ad-hoc network. Ad Hoc Networks, 43, 71-81.
Lee, W.-H., Lai, Y.-C., & Chen, P.-Y. (2015). A Study on Energy Saving and CO2 Emission Reduction on Signal Countdown Extension by Vehicular Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 64(3), 890-900.
Lee, W.-H., & Li, J.-Y. (2018). An Eco-Driving Advisory System for Continuous Signalized Intersections by Vehicular Ad Hoc Network. Journal of Advanced Transportation, 2018.
Masoud, M., & Belkasim, S. (2017). WSN-EVP: A novel special purpose protocol for emergency vehicle preemption systems. IEEE Transactions on Vehicular Technology, 67(4), 3695-3700.
Mirchandani, P., Knyazyan, A., Head, L., & Wu, W. (2001). An approach towards the integration of bus priority, traffic adaptive signal control, and bus information/scheduling systems. In Computer-Aided Scheduling of Public Transport (pp. 319-334): Springer.
Nellore, K., & Hancke, G. (2016). A survey on urban traffic management system using wireless sensor networks. Sensors, 16(2), 157.
Nygren, P., Larsson, R., Gruber, A., Peterson, C., & Bergh, J. (1991). Doxorubicin selected multidrug-resistant small cell lung cancer cell lines characterised by elevated cytoplasmic Ca 2+ and resistance modulation by verapamil in absence of P-glycoprotein overexpression. British journal of cancer, 64(6), 1011.
Pandit, K., Ghosal, D., Zhang, H. M., & Chuah, C.-N. (2013). Adaptive traffic signal control with vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 62(4), 1459-1471.
Platform, C. (2017). Certificate Policy for Deployment and Operation of European Cooperative Intelligent Transport Systems (C-ITS). European Commission.
Qin, X., & Khan, A. M. (2012). Control strategies of traffic signal timing transition for emergency vehicle preemption. Transportation research part C: emerging technologies, 25, 1-17.
Savolainen, P. T., Datta, T. K., Ghosh, I., & Gates, T. J. (2010). Effects of dynamically activated emergency vehicle warning sign on driver behavior at urban intersections. Transportation research record, 2149(1), 77-83.
Shieh, J.-L., Lu, C.-Y., & Lee, W.-H. (2013). VANET-based Coordinated Signal Control in a Local Network for Minimizing CO2 Emissions and Fuel Consumption. Paper presented at the 9th International Conference on Computing Technology and Information Management.
Sims, A. G., & Dobinson, K. W. (1980). The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits. IEEE Transactions on Vehicular Technology, 29(2), 130-137.
United Nations, D. o. E., & Social Affairs, P. D. (2019). World Population Prospects 2019: Highlights (ST/ESA/SER. A/423). In: United Nations New York.