簡易檢索 / 詳目顯示

研究生: 孫敏持
Sun, Min-chi
論文名稱: 鐵-鋅-鎂-鋰合金製程及性質探討
Investigation of process and properties of Fe-Zn-Mg-Li alloy
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 150
中文關鍵詞: 鐵鎂鋅鋰合金生醫可降解材料腐蝕性質
外文關鍵詞: Fe-Zn-Mg-Li alloy, bio-degradable material, corrosion.
相關次數: 點閱:145下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬材料具有高機械強度、高韌性、抗疲勞強度、抗腐蝕性、可塑性、加工性與高經濟性等優點。目前常見的金屬生醫材料包含不銹鋼合金、鈷鉻合金、鈦系合金(TiO2)、貴金屬合金(Pt、Au)等,但是這些材料植進人體後,並不於人體內降解,等待復原後,視情況所需進行二次手術將材料去除。
    因此,現在的趨勢是發展可降解金屬生醫材料,最大優點是可避免二次手術所造成的危險,這對於復原能力較差的患者很重要,也可避免植入永久植入材患者之後所需要的長期藥物控制。
    本研究使用目前主流研究的可降解性金屬材料:鐵、鎂、鋅。此外,加入鎂鋰合金LA使其具有合金密度很低之比重(1.4 ~ 1.6 g/cm3),希望能夠將此合金應用於硬組織如骨頭上。目前可降解性金屬所需要的降解速率與上市材料相差過大,鐵的降解速率太慢,而鎂則太快。我們期許材料的降解速率與骨組織的成長能有一個好的控制。製程上,我們利用冷壓成形同時施加不同燒結熱處理及並探討鋰對於合金在燒結製程及性質上有何影響,經過不同製程處理後的微結構、測量腐蝕性質等,分析並歸納出成分、製程與性質之間關係,希望能提供後續可降解金屬植入材之研究參考。

    Degradable metallic material is highly research because elderly patients are able to avoid the second surgery, while addressing the long-term implant material permanently implanted in the patient may be required, So we do our effort on the research of degradable material metallic.
    In part 1, we use cold press to form the Fe-Mg-Li alloy sample and do different heat treatments of materials as the main object , compared by the composition, porosity, corrosion rate and microstructure. In part 2, we also use cold press to form the Fe-Zn-Mg-Li alloy sample and do different heat treatments of materials as the main object , compared by the composition, porosity, corrosion rate and microstructure.
    In all of them, changing the composition and heat treatments change the properties obviously.

    中文摘要 I 英文延伸摘要 III 誌謝 VI 總目錄 VIII 表目錄 XII 圖目錄 XV 第一章緒論 1 1-1 前言 1 1-2 理想的生醫材料 2 1-3 臨床上生醫材料的分類 5 1-3-1金屬生醫材料 5 1-3-2陶瓷生醫材料 6 1-3-3高分子生醫材料 8 1-3-4複合材料 9 第二章文獻回顧 11 2-1 金屬生醫材料的發展 11 2-1-1常見的金屬生醫材料 13 2-1-2金屬生醫材料的近期發展 16 2-2 可降解金屬生醫材料未來發展 20 2-2-1鐵及鐵合金 21 2-2-2鋅及鋅合金 24 2-2-3鎂及鎂合金 28 2-2-4鋰及鋰合金 31 2-3 輕量化鎂鋰合金LA之發展 33 2-4 粉末冶金於生醫材料的發展 36 2-5 研究背景及目的 39 第三章理論基礎 42 3-1 粉末冶金 42 3-1-1粉末製備 42 3-1-2冷壓成形技術 44 3-1-3燒結 46 3-2 腐蝕機制 48 3-2-1腐蝕傾向 48 3-2-2極化曲線 51 3-2-3腐蝕型態 52 第四章實驗流程與方法 57 4-1 實驗流程 57 4-2 材料與製備 58 4-2-1 LA粉末製備 58 4-2-2FeLA合金原料混合 61 4-2-3FeMgA合金原料混合 62 4-2-4FeMgLA2合金原料混合 64 4-2-5冷壓成形 66 4-2-6燒結處理 69 4-3 X光繞射 70 4-4 掃描式電子顯微鏡 71 4-5 能量散佈光譜儀 73 4-6 孔隙度 75 4-7 電化學腐蝕測試 77 4-7-1試片製備 77 4-7-2模擬體液 78 4-7-3開路電位測試 79 4-7-4動電位極化曲線測試 81 第五章結果與討論(一) 83 5-1 不同重量比與不同燒結條件下之鐵鎂鋰合金性質探討 83 5-1-1合金相分析 84 5-1-2燒結情形 87 5-1-3元素分析 91 5-1-4孔隙度 99 5-1-5模擬體液中的腐蝕性質 100 第六章結論(一) 105 第七章結果與討論(二) 107 7-1 不同重量比與燒結條件下之鐵鋅鎂合金與鐵鋅鎂鋰合金性質探討 107 7-1-1燒結試片照 109 7-1-2合金相分析 114 7-1-3燒結情形 118 7-1-4元素分析 122 7-1-5孔隙度 130 7-1-6模擬體液中的腐蝕性質 132 第八章結論(二) 140 第九章參考文獻 142 第十章附錄 148

    B. Heublein, R. Rohde, V. Kaese, M. Niemeyer,W. Hartung, and A. Haverich,Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology,Heart, 89(2003)651–656.
    Chen Q, Liu L, Zhang S-M (2010) The potential of Zr-based bulk metallic glasses asbiomaterials. Front Mater Sci China 4:34–44
    Chiba A, Lee S-H, Matsumoto H, Nakamura M (2009) Construction of processing map forbiomedical Co-28Cr-6Mo-0.16N alloy by studying its hot deformation behavior usingcompression tests, Mater Sci Eng A 513–514:286–293
    Dalibor VOJTĚCH,Jiří KUBÁSEK,Jaroslav ČAPEK,Iva POSPÍŠILOVÁ,Magnesium,Zinc and Iron alloys for medical applications in biodegradable implants,Metal,2014
    David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2003
    G.G.Perrault,The potential-pH diagram of the magnesium-water system,Electroanalytical chemistry and interfacial electrochemistry,51(1974)107-119
    H. Hermawan1, H. Alamdari1, D. Mantovani1 and Dominique Dube, Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy,2008
    Habibovic P, Barrère F, Blitterswijk CAV, Groot Kd, Layrolle P (2002) Biomimetichydroxyapatite coating on metal implants, J Am Ceram Soc 83:517–522
    Hendra Hermawan, Dominique Dube´, Diego Mantovani, Degradable metallic biomaterials: Design and developmentof Fe–Mn alloys for stents,Wiley InterScience,DOI: 10.1002/jbm.a.322t1, 2009
    Hendra Hermawan,Biodegradable Metals From Concepts to Applications,Springer,2012
    Hermawan H, Mantovani D, Degradable metallic biomaterials: the concept, currentdevelopments and future directions. Minerva Biotecnol 21:207–216, 2009
    Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H-J,Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4Vproduced by direct laser forming. Biomaterials 27:955–963, 2006
    Hutmacher DW, Sittinger M, Risbud MV Scaffold-based tissue engineering: rationale forcomputer-aided design and solid free-form fabrication systems. Trends Biotechnol22:354–362, 2004
    Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zincexternal link disclaimer, Washington, DC: National Academy Press,2001
    J. S. Hirschhorn, A. A. Mcbeath, M. R. Dustoor, Porous Titanium Surgical Implant Materials, Biomedical Materials Research Symposium, 1(1971) 49-67
    John CW, Biocompatibility of dental casting alloys: a review. J Pros Dent 83:223–234, 2000
    Johnson W, Bulk amorphous metal—an emerging engineering material. J Min Met MatSoc 54:40–43, 2002
    Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T, Design and mechanical propertiesof new [beta] type titanium alloys for implant materials. Mater Sci Eng A t13:t14–t19, 1998
    Lahann J, Klee D, Thelen H, Bienert H, Vorwerk D, Hocker H, Improvement ofhaemocompatibility of metallic stents by polymer coating. J Mater Sci Mater Med10:443–4t2, 1999
    Lambotte A, Technique et indication des prothèses dans le traitement des fractures. PresseMed 17:321, 1909
    Lane WA, Some remarks on the treatment of fractures, Brit Med J 1:861–863,1895
    Lee SH, Nomura N, Chiba A, Significant improvement in mechanical properties ofbiomedical Co-Cr-Mo alloys with combination of N addition and Cr-enrichment. Mater Trans49:260–264, 2008
    Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K, Bone ingrowth in porous titanium implants produced by 3D fiber deposition.Biomaterials 28:2810–2820, 2007
    Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P, Rapidprototyped porous titanium coated with calcium phosphate as a scaffold for bone tissueengineering. Biomaterials 29:2608–2615, 2008
    M. Peuste,C. Hesse,T. Schloo,C. Fink,P. Beerbaum and C. Schnakenburg, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials,27(2006)4955-4962.
    Matsumoto H, Watanabe S, Hanada S, Beta TiNbSn alloys with low Young’s modulus andhigh strength. Mater Trans 46:1070–1078, 2005
    Ryan G, Pandit A, Apatsidis DP, Fabrication methods of porous metals for use inorthopaedic applications, Biomaterials 27:2651–2670, 2006
    Ryan GE, Pandit AS, Apatsidis DP, Porous titanium scaffolds fabricated using a rapidprototyping and powder metallurgy technique, Biomaterials 29:3625–3635, 2008
    S. Rhalmi, M. Odin, M. Assad, M. Tabrizian, C. H. Rivard andL. H. Yahia, Bio-Medical Materials and Engineering, 9(1999)151–162.
    Schroers J, Kumar G, Hodges T, Chan S, Kyriakides T, Bulk metallic glasses forbiomedical applications. J Min Met Mater Soc 61:21–29, 2009
    Sherman WO, Vanadium steel bone plates and screws, Surg Gynecol Obstet 14:629–634, 1912
    Stack RS, Califf RM, Phillips HR, Pryor DB, Quigley PJ, Bauman RP, Tcheng JE, Greenfield JCJr ,Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62:3F–t1F, 1988
    T. F. Volynova, I. B. Medov,and I. B. Sidorova ,Mechaicalproperties and the fine structure of powdered Iron-Manganese alloys,Powder Metallurgy and Metal Ceramics,25(1986)999-1006
    Wang YB, Zheng YF, Wei SC, Li M, In vitro study on Zr-based bulk metallic glasses aspotential biomaterials. J Biomed Mater Res B 96:34–46, 2011
    Xue-Nan Gu,Yu-Feng Zheng,A review on magnesium alloys as biodegradable materials,Frontiers of Materials Science,4(2010)111-115
    Yang K, Ren Y, Nickel-free austenitic stainless steels for medical applications. SciTechnol Adv Mater 11:1–13, 2010
    Y-H.Li, G-B. Rao, L-J.Rong, Y-Y. Li and W.Ke, Effect of Pores on Corrosion Characteristics of Porous NiTi Alloy in Simulated Body Fluid,Materials Science and Engineering A, 363(2003) 356-359
    Zberg B, Uggowitzer PJ, Loffler JF, MgZnCa glasses without clinically observablehydrogen evolution for biodegradable implants. Nat Mater 8:887–891, 2009
    H. Takuda, H. Matsusaka, S. Kikuchi, K. Kubota,Tensile properties of a few Mg-Li-Zn alloy thin sheets,2002
    Zhong, H., Liu, P. , Zhou, T., Li, H. ,Design of an age hardening Mg-Li alloy and its aging behavior
    ASM Speciality Handbook, “Magnesium and Magnesium Alloy s”,ASM International,1999
    S.K. Wu, J.Y. Wang, K.C. Lin, H.Y. Bor,Effects of cold rolling and solid solution treatments on mechanical properties ofβ-phase Mg–14.3Li–0.8Zn alloy,1971
    王繼敏,不鏽鋼與金屬腐蝕,科技圖書股份有限公司,p.136-156,1990
    宋信文,生醫材料簡介,2003
    李岳霖, 鐵/鋅複合材料製程、結構及性質研究, 國立成功大學碩士論文, 2014
    汪建民,材料分析,中國材料科學學會, 1998
    汪建民,粉末冶金技術手冊,中華民國粉體及粉末冶金協會,1994
    徐仁輝,粉末冶金概論,新文京開發出版有限公司, 2002
    高材,林康平,林峰輝,陳家進,生物醫學工程導論,中華民國生物醫學工程學會,2008
    國人膳食營養素參考攝取量,第六版,2003
    趙長生,生物醫用高分子材料,化學工業出版社,2009
    大島宣雄,生物醫學工程概論 : 支援醫學的工程學,2012
    王正一,醫學工程原理與應用,1996

    下載圖示 校內:2021-08-02公開
    校外:2021-08-02公開
    QR CODE