研究生: |
羅家昇 Lo, Chia-Sheng |
---|---|
論文名稱: |
PBGA構裝體的數值模擬與最佳化之研究 The numerical simulation and optimization of PBGA package |
指導教授: |
吳俊煌
Wu, Gien-Huang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 灰關聯分析法 、球腳陣列矩陣封裝 |
外文關鍵詞: | Plastic Ball Grid Array, Grey Relational Analysis |
相關次數: | 點閱:94 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用有限元素分析軟體ANSYS8.1,以三維模型模擬EPBGA構裝體的熱應力、熱應變及熱傳行為分析。EPBGA構裝體由七個部分所組成,分別為散熱板、成形樹脂、晶片、基板、熱通孔、錫球及印刷電路板。構裝體由不同的材料所構成,為了能夠描述不同材料的特性,在熱應力、熱應變的模擬分析時,錫球材料的黏塑特性以Anand模型模擬,成形樹脂材料的黏彈特性以Maxwell模型模擬,散熱板、晶片、基板、熱通孔及印刷電路板材料則以彈性體模擬,模擬構裝體在125℃~-40℃熱循環負載下的變形行為。在熱傳分析方面,構裝體與外界初始溫度為25℃,晶片每單位體積發熱量為0.03W/mm3,當構裝體達到穩態時,探討其散熱情況與熱阻值。
本研究利用灰關聯分析法與田口直交表進行雙品質目標最佳化設計。品質目標為錫球的應變與構裝體的熱阻值,配合適當的控制因子進行田口直交表實驗數據分析,並利用灰關聯分析法進行簡單的運算和建立總灰關聯度反應表及反應圖,以求得最佳組合。
This research is using 3-dimensional model simulation to analyze the thermal-mechanical and heat transfer behavior of EPBGA by applying finite element analysis ANSYS 8.1. EPBGA model consists of seven parts, they are heat spreader, molding compound, chip, substrate, thermal vias, solder ball and PCB board. The model is constructed by different materials and each material has its own function to demonstrate its characteristic. For analysis on thermal-mechanical behavior, the viscoplastic behavior of solder ball is modeled using Anand model, the viscoelastic behavior of molding compound is simulated by Maxwell model, the other parts are using linear elastic model to simulate. As a result, analysis of transformation behavior of EPBGA can be carried out under a 125℃~-40℃heat cycling environment. For heat spreading analysis, the beginning temperature of EPBGA and surrounding area is 25℃, the heat dissipation per volume unit of chip is 0.03 W/mm3. When it reaches stable condition, analysis of heat transfer behavior and stress and strain distributions will be carried out.
Moreover, this research is using Grey relational analysis and Taguchi’s orthogonal arrays to achieve the design of optimization of multiple responses. The required responses are the solder ball response and the stress and strain distributions of EPBGA. Accompanying suitable control factors, the experimental data of Taguchi’s orthogonal arrays can be analyzed, on the other hand, by applying Grey relational analysis to perform simple calculations and constructing response table and response graph, optimal design can be achieved.
1.ANSYS 8.1 Online Reference,” ANSYS Inc. Company.
2.Deng, Julong, “Introduction to Grey System,” Journal of Grey System, 1(1), pp. 1-24, 1989.
3.Ellison, G.N., “Thermal Computations for Electronic Equipment,” Van Nostrand Reinhole Company, New York, 1989.
4.Haiyu, Q., Ganesan, S., Osterman, M., Pecht, M., ”Accelerated testing and finite element analysis of PBGA under multiple environmental loadings,” 2004 International Conference on the Business of Electronic Product Reliability and Liability, pp. 99-106, Apr 27-30, 2004.
5.Hirose, Y., Yamagata, S.-I., Imamura, M., Abe, Y., Fukui, A., Shimazu, M., Fujimori, N., “Thermal management of heat spreader materials for flip chip type package,” Fifteenth Annual IEEE on Semiconductor Thermal Measurement and Management Symposium, pp. 105-112, 1999.
6.Hwang, C. L. and Yoon, “Multiple Attribute Decision Making-Method and Applications,” A State-of-the-Art Survey, Springer-Verlag, New York, 1981.
7.Lau, J.H., “High-Density PCB and Substrates,” Low Cost Flip Chip Technologies.
8.Lee, S.-W, Lau, J.H., “Effect of Chip Dimension and Substrate Thickness on the Solder Joint Reliability of Plastic Ball Grid Array Packages,” Circuit World, Vol. 23, No. 1, pp. 16-19, 1997.
9.Lee, S.W.R., Lau, D., “Computational model validation with experimental data from temperature cycling tests of PBGA assemblies for the analysis of board level solder joint reliability,” the 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2004, pp. 115-120, 2004.
10.Lee, T.-Y.T., “An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 3, pp. 481-488, 2000.
11.Li, R.S., “Optimization of Thermal Via Design Parameters Based on an Analytical Thermal Resistance Model,” Intersociety Conference on Thermal Phenomena, pp. 475-480, 1998.
12.Masazumi A., “Characterization of chip scale packaging materials,” Microelectronics Reliability 39, pp. 1365-1377, 1999.
13.Mertol, A., “Optimization of high pin count cavity-up enhanced plastic
ball grid array (EPBGA) packages for robust design,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 20, Issue 4,
pp. 376-388, Nov. 1997.
14.Mertol, A., ”Thermal Performance Comparison of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 2,
pp. 427-443, 1996.
15.Ramakrishna, K., Lee, T.-Y.T., “Prediction of thermal performance of flip chip-plastic ball grid array (FC-PBGA) packages: effect of substrate physical design,” The Eighth Intersociety Conference on Thermal and Thermo mechanical Phenomena in Electronic Systems, 2002, pp. 528-537, 2002.
16.Wang, C.H., Tong, L.I., “Optimization of Cu-CMP Process via Grey Decision,” the Journal of Grey System, Vol. 1, pp. 79-90, 2002.
17.Zahn, B.A., “Optimizing Cost and Thermal Performance: Rapid Prototyping
of a High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Package,” Fifteenth IEEE SEMI-THERM Symposium, pp. 133-141, 1999.
18.鄧聚龍,“灰色系統理論與應用,”高立圖書有限公司,1999.
19.李輝煌,”田口方法─品質設計的原理與實務,”高立圖書有限公司,2000.
20.張勳承,“田口方法應用與覆晶構裝錫球的熱應力分析,”碩士論文,國立成功大學, 2003.
21.徐梓青,“FC-BGA構裝體的數值分析與最佳化研究,”碩士論文,國立成功大學,2004.
22.王春和,“應用灰關聯分析法於多品質特性與等級類別品質特性之最佳化,”博士論文, 國立交通大學, 2001.