| 研究生: |
黃健庭 Huang, Chien-Ting |
|---|---|
| 論文名稱: |
不同施力程度的疲勞性收縮對震顫特徵之影響 Exertion-Dependent Changes in Tremor Characteristics During Fatiguing Contraction |
| 指導教授: |
黃英修
Hwang, Ing-Shiou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 肌肉疲勞 、震顫 、疲勞性收縮 、施力震顫 、施力程度 、背側第一掌骨間肌 、震顫-肌電訊號互譜值 |
| 外文關鍵詞: | exertion level, first dorsal interosseous, tremor-EMG coherence, tremor, muscle fatigue, fatiguing contraction, force tremor |
| 相關次數: | 點閱:84 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究目的:所謂肌肉疲勞(muscle fatigue)是指因運動導致肌肉收縮能力降低或無法維持穩定的力量。儘管肌肉疲勞的機制相當複雜且擁有多面向的特徵,過去大部分的研究都只著重在作用肌肉本身生理特性的改變,而較少注意到隨著肌肉疲勞產生,疲勞引起的肢體微振動的變化。本研究結合肌電訊號、施力波動以及肢體微振動訊號,來描述持續性的25%以及75%最大自主收縮力量等長收縮過程中肌肉疲勞特徵的變化。因此本實驗的研究目的為:(1)比較兩種不同施力程度的疲勞性收縮之下,施力震顫(包含施力波動以及肢體微振動)特徵隨著時間進展的變化差異;(2)比較施力波動與肢體微振動訊號以及肌電訊號在反應肌肉疲勞變化上的差異,以對肌肉疲勞的生理特性有更進一步的瞭解。
研究方法:十五位健康成人參與本研究,主要任務為執行持續性的食指外展等長性收縮直到精疲力竭為止,施力程度為75%(高強度)以及25%(低強度)最大自主收縮力量(MVC)。過程中收集受試者的施力波動、背側第一掌骨間肌(FDI)的肌電訊號以及食指指節和手部微振動訊號的變化。分析的參數包括施力波動、肌電訊號以及肢體微振動訊號的均方根值、頻譜高峰頻率、主要頻帶頻譜功率以及肌電訊號中頻從0%到100%耐力限制時間點的變化。掌骨-指骨間關節的機械耦合強度在肌肉疲勞時的變化則以近端指節與掌骨微振動訊號的相關性來呈現。另外還會分析微振動-肌電訊號、微振動-施力波動訊號以及肌電-施力波動訊號互譜值於兩種不同疲勞收縮過程中的變化,來不同生理訊號之間的一致性變化。
研究結果:施力波動,肌電訊號以及微振動訊號均方根值在兩種施力強度的疲勞收縮下隨著時間都有明顯的上昇,且以微振動訊號在低程度收縮時相對於起始值的上升幅度最為顯著。指節與手部微振動訊號的相關性在低程度收縮時是逐漸上升的,反之高程度收縮時則逐漸下降。肌電訊號中頻下降趨勢則以高程度收縮較為顯著。微振動訊號頻譜的高峰頻率主要落在8-12 Hz以及20-40 Hz兩個頻帶內,低程度收縮時高峰頻率會由8.72上升到10.48 Hz,而不論施力程度兩個頻帶的頻譜功率皆顯著上升,尤其以低程度收縮的上升幅度最為明顯。訊號間互譜值方面,震顫-肌電訊號有8-12 Hz以及20-30 Hz兩個頻帶的互譜值達顯著水準,而震顫-施力訊號以及肌電-施力訊號只有在8-12 Hz有顯著相關,訊號間互譜值的變化趨勢受到施力程度高低相當大的影響:高程度收縮時,所有訊號組合以及頻帶的互譜值都明顯下降,低程度收縮時,除了震顫-肌電訊號在20-30Hz頻帶的互譜值維持在顯著水準不變之外,其他的互譜值隨著肌肉疲勞都有明顯的上升趨勢。
結論:施力波動、肌電訊號以及肢體微振動訊號在肌肉疲勞性收縮過程的特徵變化會因為施力程度不同而有差異,可能是由於不同施力程度所造成動作單元活動徵召與去徵召的差異;其中,肢體微振動訊號比其他生理訊號似乎提供更多額外的關於肌肉疲勞的特徵,因為肢體微振動訊號能更完整地反映出包含肌肉機械特性、反射敏感度以及中樞神經振盪等與肌肉疲勞有關的特徵變化。
Objective: Muscle fatigue has been defined as exercise-induced reduction in the ability of a muscle to generate force or power. Despite complexity of underlying mechanisms and multi-facet features of muscle fatigue, little attention has been paid to exhaustion-driven microvibration that steps up in association with fatigue development. In this study, we combined EMG, force fluctuations, and limb microvibrations to characterize fatigue development in the course of sustained isometric contraction at 25% and 75 % maximal voluntary contractions (MVC). The purposes of this study are: 1) to contrast temporal changes in force tremors (force fluctuations and limb microvibrations) between fatiguing isometric contractions at the two exertion levels, and 2) to compare differences of muscle fatigue characterized with force fluctuations, limb microvibrations, and surface EMG to gain a better insight into fatigue physiology.
Methods: Fifteen healthy adult volunteers performed sustained isometric index abduction at 25% and 75% MVC until exhaustion. Force fluctuations, electromyographic (EMG) activities of the first dorsal interosseous (FDI) and limb microvibrations from the index and the hand were recorded. A number of temporal alternation in fatigue-related parameters were assessed, including root mean square (RMS) of EMG, force fluctuations, and limb microvibrations, spectral power and spectral peaks of force tremors, EMG median frequency (MDF) from 0% to 100% endurance of limits. The fatigue-related changes in strength of mechanical coupling of the metacarpal-phalangeal (MCP) joint were quantified with correlation between microvibrations of proximal phalange and metacarpal bone. Coherence of microvibration-EMG (CohMV-EMG), microvibration-force fluctuation (CohMV-FF), and EMG-force fluctuation (CohEMG-FF) were calculated to substantiate community changes among different physiological signals resulted from two different fatigue processes.
Results: Force fluctuations, EMG RMS and microvibrations increased progressively with time during 25% and 75% MVC fatiguing contractions, with the most remarkable increment for microvibration in reference to its initial value at the low force level (25%MVC) contraction. Correlation of microvibrations between the finger and the hand increased progressively at the low force level contraction, however, the correlation reduced together with EMG MDF at the high force level contraction (75% MVC). Spectral analysis of microvibrations demonstrated that two marked spectral peaks in 8-12 and 20-40 Hz bands. Spectral peaks of microvibrations in 8-12 Hz band increased from 8.72 to 10.48 Hz after low level fatiguing contraction. Besides, spectral power within those two main frequency bands increased significantly, with more obvious trend during the low level fatiguing contraction. As for coherence, there were 8-12 Hz and 20-30 Hz in the CohMV-EMG, but only the 8-12 Hz rhythms were present in the CohMV-FF and CohEMG-FF. Coherence were subject to the levels of fatiguing contraction. At the high level fatiguing contraction, coherence of all the combinations and frequency bands declined drastically with fatigue. Comparatively, at the low level fatiguing contraction, CohMV-EMG in the 20-30 Hz remained insensitive to fatigue progress, whereas CohMV-EMG, CohMV-FF and CohEMG-FF in the 8-12 Hz increased significantly with fatigue.
Conclusion: There were exertion-dependent changes in characteristics of force fluctuations, EMG, and limb microvibrations during fatiguing contractions. It might involve with different MU recruitment/ decruitment strategies between the two different exertion levels. In contrast to EMG and force fluctuation, limb microvibration appeared to provide more comprehensive pictures of fatigue development, because it reflects an integrated feature of fatigue-related changes in muscle mechanical properties, reflex sensitivity, and neural involvement as a result of central oscillation.
1.Adam A, De Luca CJ. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions. J Neurophysiol. 90(5):2919-27, 2003.
2.Allum JH, Dietz V, Freund HJ. Neuronal mechanisms underlying physiological tremor. J Neurophysiol. 41(3):557-71, 1978.
3.Arihara M, Sakamoto K. Contribution of motor unit activity enhanced by acute fatigue to physiological tremor of finger. Electromyogr Clin Neurophysiol. 39(4):235-47, 1999.
4.Avela J, Kyrolainen H, Komi PV. Neuromuscular changes after long-lasting mechanically and electrically elicited fatigue. Eur J Appl Physiol. 85(3-4):317-25, 2001.
5.Balestra C, Duchateau J, Hainaut K. Effects of fatigue on the stretch reflex in a human muscle. Electroencephalogr Clin Neurophysiol. 85(1):46-52, 1992.
6.Barry DT, Geiringer SR, Ball RD. Acoustic myography: a noninvasive monitor of motor unit fatigue. Muscle Nerve. 8(3):189-94, 1985.
7.Bigland-Ritchie B, Johansson R, Lippold OC, Woods JJ. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol. 50(1):313-24, 1985.
8.Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve. 7(9):691-9, 1984.
9.Bilodeau M, Schindler-Ivens S, Williams DM et al. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J Electromyogr Kinesiol. 13(1):83-92, 2003.
10.Brody LR, Pollock MT, Roy SH et al. pH-induced effects on median frequency and conduction velocity of the myoelectric signal. J Appl Physiol. 71(5):1878-85, 1991.
11.Buchanan CI, Marsh RL. Effects of long-term exercise on the biomechanical properties of the Achilles tendon of guinea fowl. J Appl Physiol. 90(1):164- 71, 2001.
12.Carpentier A, Duchateau J, Hainaut K. Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus. J Physiol. 534(Pt 3):903-12, 2001.
13.Clamann HP, Robinson AJ. A comparison of electromyographic and mechanical fatigue properties in motor units of the cat hindlimb. Brain Res. 327(1-2):203-19, 1985.
14.Conway BA, Halliday DM. Rosenberg JR, and Farmer SF. On the relation between motor-unit discharges and tremor. In: Taylor A, Gladden MH, and Durbaba R. (eds.) Alpha and gamma motor systems. Plenum Press, New York. pp596-98, 1995.
15.Crenshaw AG, Karlsson S, Gerdle B et al. Differential responses in intramuscular pressure and EMG fatigue indicators during low- vs. high-level isometric contractions to fatigue. Acta Physiol Scand. 160(4):353-61, 1997.
16.Cresswell AG, Loscher WN. Significance of peripheral afferent input to the alpha-motoneurone pool for enhancement of tremor during an isometric fatiguing contraction. Eur J Appl Physiol. 82(1-2):129-36, 2000.
17.Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc. 29(1):45-57, 1997.
18.de Luca CJ, Foley PJ, Erim Z. Motor unit control properties in constant-force isometric contractions. J Neurophysiol. 76(3):1503-16, 1996.
19.De Luca CJ, LeFever RS, McCue MP et al. Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 329:113-28, 1982.
20.De Luca CJ. Muscle fatigue and time-dependent parameters of the surface EMG signal. In: Basmajian JV & De Luca CJ. (eds.) Muscles alive: Their functions revealed by electromyography. 5th ed. Baltimore: Williams & Wilkins. pp201-20, 1985.
21.Dimitrova NA, Dimitrov GV. Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies. J Electromyogr Kinesiol. 13(1):13-36, 2003.
22.Duchateau J, Balestra C, Carpentier A, Hainaut K. Reflex regulation during sustained and intermittent submaximal contractions in humans. J Physiol. 541(Pt 3):959-67, 2002.
23.Ebenbichler GR, Kollmitzer J, Erim Z et al. Load-dependence of fatigue related changes in tremor around 10 Hz. Clin Neurophysiol. 111(1):106-11, 2000.
24.Elble RJ, Randall JE. Motor-unit activity responsible for 8- to 12-Hz component of human physiological finger tremor. J Neurophysiol. 39(2):370-83, 1976.
25.Elble RJ, Randall JE. Mechanistic components of normal hand tremor. Electroencephalogr Clin Neurophysiol. 44(1):72-82, 1978.
26.Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 72(5):1631-48, 1992.
27.Enoka RM, Robinson GA, Kossev AR. Task and fatigue effects on low-threshold motor units in human hand muscle. J Neurophysiol. 62(6):1344-59, 1989.
28.Gamet D, Maton B. The fatigability of two agonistic muscles in human isometric voluntary submaximal contraction: an EMG study. I. Assessment of muscular fatigue by means of surface EMG. Eur J Appl Physiol Occup Physiol. 58(4):361-8, 1989.
29.Gandevia SC. Neural control in human muscle fatigue: changes in muscle afferents, motoneurones and motor cortical drive [corrected]. Acta Physiol Scand. 162(3):275-83, 1998.
30.Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 81(4):1725-89, 2001.
31.Goldenberg MS, Yack HJ, Cerny FJ, Burton HW. Acoustic myography as an indicator of force during sustained contractions of a small hand muscle. J Appl Physiol. 70(1):87-91, 1991.
32.Green HJ. Mechanisms of muscle fatigue in intense exercise. J Sports Sci. 15(3):247-56 1997.
33.Hallett M. Overview of human tremor physiology. Mov Disord. 13(Suppl 3):43-8, 1998.
34.Halliday DM, Conway BA, Farmer SF, Rosenberg JR. Load-independent contributions from motor-unit synchronization to human physiological tremor. J Neurophysiol. 82(2):664-75, 1999.
35.Homberg V, Reiners K, Hefter H et al. The muscle activity spectrum: spectral analysis of muscle force as an estimator of overall motor unit activity. Electroencephalogr Clin Neurophysiol. 63(3):209-22, 1986.
36.Hunter SK, Duchateau J, Enoka RM. Muscle fatigue and the mechanisms of task failure. Exerc Sport Sci Rev. 32(2):44-9, 2004.
37.Joyce GC, Rack PM. The effects of load and force on tremor at the normal human elbow joint. J Physiol. 240(2):375-96, 1974.
38.Kellermayer MS, Smith SB, Bustamante C, Granzier HL. Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J. 80(2):852-63, 2001.
39.Krogh-Lund C, Jorgensen K. Modification of myo-electric power spectrum in fatigue from 15% maximal voluntary contraction of human elbow flexor muscles, to limit of endurance: reflection of conduction velocity variation and/or centrally mediated mechanisms? Eur J Appl Physiol Occup Physiol. 64(4):359-70, 1992.
40.Krogh-Lund C. Myo-electric fatigue and force failure from submaximal static elbow flexion sustained to exhaustion. Eur J Appl Physiol Occup Physiol. 67(5):389-401, 1993.
41.Kuchinad RA, Ivanova TD, Garland SJ. Modulation of motor unit discharge rate and H-reflex amplitude during submaximal fatigue of the human soleus muscle. Exp Brain Res. 158(3):345-55, 2004.
42.Loscher WN, Cresswell AG, Thorstensson A. Central fatigue during a long-lasting submaximal contraction of the triceps surae. Exp Brain Res. 108(2):305-14, 1996a.
43.Loscher WN, Cresswell AG, Thorstensson A. Electromyographic responses of the human triceps surae and force tremor during sustained submaximal isometric plantar flexion. Acta Physiol Scand. 152(1):73-82, 1994.
44.Loscher WN, Cresswell AG, Thorstensson A. Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man. J Physiol. 491(Pt 1):271-80, 1996b.
45.Lowery M, Nolan P, O'Malley M. Electromyogram median frequency, spectral compression and muscle fibre conduction velocity during sustained sub-maximal contraction of the brachioradialis muscle. J Electromyogr Kinesiol. 12(2):111-8, 2002.
46.Mamaghani NK, Shimomura Y, Iwanaga K, Katsuura T. Changes in surface EMG and acoustic myogram parameters during static fatiguing contractions until exhaustion: influence of elbow joint angles. J Physiol Anthropol Appl Human Sci. 20(2):131-40, 2001.
47.Masuda K, Masuda T, Sadoyama T et al. Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol. 9(1):39-46, 1999.
48.Maton B, Gamet D. The fatigability of two agonistic muscles in human isometric voluntary submaximal contraction: an EMG study. II. Motor unit firing rate and recruitment. Eur J Appl Physiol Occup Physiol. 58(4):369-74, 1989.
49.McAuley JH, Rothwell JC, Marsden CD. Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing. Exp Brain Res. 114(3):525-41, 1997.
50.Milner-Brown HS, Stein RB, Yemm R. The contractile properties of human motor units during voluntary isometric contractions. J Physiol. 228(2):285-306, 1973.
51.Moritani T, Muro M, Kijima A, Gaffney FA, Parsons D. Electromechanical changes during electrically induced and maximal voluntary contractions: surface and intramuscular EMG responses during sustained maximal voluntary contraction. Exp Neurol. 88(3):484-99, 1985.
52.Moritani T, Muro M, Nagata A. Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol. 60(4):1179-85, 1986.
53.Moritz CT, Barry BK, Pascoe MA et al. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol. 93(5):2449-59, 2005.
54.Morrison S, Newell KM. Postural and resting tremor in the upper limb. Clin Neurophysiol. 111(4):651-63, 2000.
55.Oda S, Kida N. Neuromuscular fatigue during maximal concurrent hand grip and elbow flexion or extension. J Electromyogr Kinesiol. 11(4):281-9, 2001.
56.Orizio C, Perini R, Veicsteinas A. Changes of muscular sound during sustained isometric contraction up to exhaustion. J Appl Physiol. 66(4):1593-8, 1989.
57.Sakamoto K, Miao T, Arihara M. Analysis of interaction of spinal and supraspinal reflex pathways involved in physiological tremor. Electromyogr Clin Neurophysiol. 38(2):103-13, 1998.
58.Sakamoto K, Itakura N, Nishida K et al. Study of function of fingers by physiologica tremor. J Therm Biol. 18(5/6):665-69, 1993.
59.Stein RB, Oguztoreli MN. Tremor and other oscillations in neuromuscular systems. Biol Cybern. 22(3):147-57, 1976.
60.Stiles RN, Randall JE. Mechanical factors in human tremor frequency. J Appl Physiol. 3:324-30, 1967.
61.Stiles RN. Mechanical and neural feedback factors in postural hand tremor of normal subjects. J Neurophysiol. 44(1):40-59, 1980.
62.Sutton GG, Sykes K. The variation of hand tremor with force in healthy subjects. J Physiol. 191(3):699-711, 1967.
63.Taylor AM, Christou EA, Enoka RM. Multiple features of motor-unit activity influence force fluctuations during isometric contractions. J Neurophysiol. 90(2):1350-61, 2003.
64.Vaillancourt DE, Newell KM. Amplitude changes in the 8-12, 20-25, and 40 Hz oscillations in finger tremor. Clin Neurophysiol. 111(10):1792-801, 2000.
65.Vollestad NK. Measurement of human muscle fatigue. J Neurosci Methods. 74(2):219-27, 1997.
66.Westerblad H, Allen DG, Bruton JD et al. Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiol Scand. 162(3):253-60, 1998.
67.Zhang LQ, Rymer WZ. Reflex and intrinsic changes induced by fatigue of human elbow extensor muscles. J Neurophysiol. 86(3):1086-94, 2001.
68.Zwarts MJ, Arendt-Nielsen L. The influence of force and circulation on average muscle fibre conduction velocity during local muscle fatigue. Eur J Appl Physiol Occup Physiol. 58(3):278-83, 1988.