簡易檢索 / 詳目顯示

研究生: 林岱頡
Lin, Dai-Jie
論文名稱: 藉由熱處理奈米銀顆粒輔助增強單根n型氧化鋅/p型氮化鎵異質結構發光二極體紫外光電激發光表現
Enhanced ultraviolet electroluminescence from an individual n-ZnO microrod/p-GaN heterostructured light-emitting diodes via assisting annealed Ag Nanoparticles
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 81
中文關鍵詞: 氧化鋅微米柱表面電漿子共振耦合奈米銀顆粒發光二極體
外文關鍵詞: ZnO microrod, surface plasmon resonance coupling, silver nanoparticles, light-emitting diode
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因氧化鋅具有寬能隙(3.37 eV)及較大的激子束縛能(60 meV),且為六角柱結構,提供了天生的耳語廊共振腔,因此光易在共振腔內全反射,使得氧化鋅成為一個具潛力作為近紫外光發光二極體與雷射二極體的半導體材料。然而,至今在p型氧化鋅的製作上仍有瓶頸且具不穩定性,因而選用晶格不匹配較低且晶型相似的氮化鎵作為p-n接面中的p型材料。
    為了增強n型氧化鋅/p型氮化鎵二極體紫外放光強度,透過退火輔助而形成的奈米銀顆粒,使得氧化鋅中的激子與奈米銀粒子的表面電漿子耦合共振,進而改善元件表現。藉由退火的方式,奈米銀顆粒吸收譜位置會逐漸藍移,靠近氧化鋅的近能帶。在光激發光光譜中,氧化鋅的近能帶放光可以增強約4倍,而電激發光光譜可以增強約10倍。除此之外,從時間解析光激發光光譜可以發現有了奈米銀顆粒表面電漿子的加入後,整體復合速率變快,為此提供了光譜增強的直接證據。

    Zin oxide (ZnO) is a semiconductor material with a wide band gap (3.37 eV) and large exciton binding energy (60 meV) and a hexagonal structure providing natural whispering-gallery-mode (WGM) microcavity based on total internal reflection at boundaries making it valuable for near-ultraviolet (near-UV) light-emitting diodes and laser diodes. However, the stable and reproducible p-ZnO is still a bottleneck due to the self-compensation. The alternative approach is to combine with the other p-type material such as p-GaN having little lattice mismatch and similar crystallographic with ZnO.
    In order to enhance the luminescence of n-ZnO/p-GaN, the silver nanoparticles (Ag NPs) were inserted between n-ZnO and p-GaN. The improved performance is attributed to the resonant coupling between surface plasmon of Ag and exciton of ZnO. The resonant peaks of Ag NPs followed by the annealing treatment would blueshift close to the NBE of ZnO and lead to the ~4-fold and ~12-fold enhancement in photoluminescence (PL) and electroluminescence (EL) measurements, respectively. The results of time-resolved PL (TR-PL) spectra and the theoretical calculations based on the experimental data reveal the decreased spontaneous emission is attributed to coupling between ZnO excitons and Ag-LSPs.

    摘要 I Abstract II 致謝 III Contents V List of Tables VIII List of Figures IX 1 Introduction 1 1-1 Preface 1 1-2 Motivation 11 2 Background Theories 12 2-1 Characteristics of Zinc Oxide 12 2-2 The Spontaneous Emission of Zinc Oxide 14 2-2-1 Ultraviolet Emission 14 2-2-2 Green Emission 16 2-3 Surface plasmon 17 2-3-1 Surrounding medium 19 2-3-2 Size effects 19 2-3-3 Nanoparticle shape 20 2-3-4 Particle-particle interaction 21 2-4 p-n Heterojunction 22 2-4-1 Structure of a p-n junction 22 2-4-2 Properties of a p-n junction 23 2-5 The evaluation of parasitic resistance 25 2-6 The contact between metal and semiconductors 27 2-6-1 Schottky barrier 27 2-6-2 Ohmic contact 30 2-6-3 The metal choose for n-ZnO and p-GaN for Ohmic contact 32 3 Experiment Process 33 3-1 Experimental Procedure 33 3-2 Chemical and Consumable 34 3-3 The Growth System of ZnO MRs 35 3-3-1 Chemical Vapor Deposition System 35 3-3-2 Substrate cleaning 37 3-3-3 The Growth of ZnO MRs 38 3-3-4 The Transfer of ZnO MR 39 3-4 Samples Preparation 40 3-4-1 Samples for absorbance of Ag NPs 40 3-4-2 Samples for PL measurement 40 3-4-3 Device for EL measurement 41 4 Measurement Instrument 43 4-1 Field-Emission Scanning Electron Microscopy 43 4-2 ImageJ 44 4-3 Absorbance 45 4-4 Photoluminescence 46 4-5 Time-Resolved Photoluminescence 48 4-6 Semiconductor Characterization System 49 4-7 Electroluminescence 50 5 Results and Discussions 52 5-1 Material characterizations 52 5-1-1 Structure characterization of ZnO MRs 52 5-1-2 Morphology and size distribution of Ag NPs 53 5-2 Optical properties 58 5-2-1 Absorbance Analysis 58 5-2-2 Continuous-wave PL Analysis 60 5-2-3 Time-resolved PL Analysis 62 5-3 Electrical performances 64 5-3-1 I-V Characterization 64 5-3-2 Electroluminescence 69 5-4 Comparison 73 6 Conclusion 75 7 Prospective Aspects 76 8 Reference 78

    1 R. Liu, X. W. Fu, J. Meng, Y. Q. Bie, D. P. Yu, and Z. M. Liao, Nanoscale 5 (12), 5294 (2013).
    2 A. E. Rakhshani, Journal of Applied Physics 108 (9), 094502 (2010).
    3 J. H. Kim I. S. Jeong, and S. Im, Appl. Phys. Lett. 83 (14), 2946 (2003).
    4 X. M. Ding Z. B. Deng, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett. 74 (15), 2227 (1999).
    5 G. Y. Zhu, J. T. Li, Z. S. Tian, J. Dai, Y. Y. Wang, P. L. Li, and C. X. Xu, Appl. Phys. Lett. 106 (2), 021111 (2015).
    6 X. Li, J. J. Qi, Q. Zhang, Q. Wang, F. Yi, Z. Z. Wang, and Y. Zhang, Appl. Phys. Lett. 102 (22) (2013).
    7 W. C. Lai, J. T. Chen, and Y. Y. Yang, Optics Express 21 (8), 9643 (2013).
    8 M. Ding, D. X. Zhao, B. Yao, B. Zhao, and X. J. Xu, Chemical Physics Letters 577, 88 (2013).
    9 J. Dai, C. X. Xu, and X. W. Sun, Advanced Materials 23 (35), 4115 (2011).
    10 Y. T. Xu, L. Xu, J. Dai, Y. Ma, X. W. Chu, Y. T. Zhang, G. T. Du, B. L. Zhang, and J. Z. Yin, Appl. Phys. Lett. 106 (21), 212105 (2015).
    11 Y. T. Xu, J. Dai, Z. F. Shi, B. H. Long, B. Wu, X. P. Cai, X. W. Chu, G. T. Du, B. L. Zhang, and J. Z. Yin, Journal of Luminescence 149, 313 (2014).
    12 W. Q. Yang, H. B. Huo, L. Dai, R. M. Ma, S. F. Liu, G. Z. Ran, B. Shen, C. L. Lin, and G. G. Qin, Nanotechnology 17 (19), 4868 (2006).
    13 Z. P. Fu, W. W. Dong, B. F. Yang, Z. Wang, Y. L. Yang, H. W. Yan, S. Y. Zhang, J. Zuo, M. S. Ma, and X. M. Liu, Solid State Commun 138 (4), 179 (2006).
    14 N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, Nanotechnology 19 (46) (2008).
    15 P. Shimpi, P. X. Gao, D. G. Goberman, and Y. Ding, Nanotechnology 20 (12) (2009).
    16 S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, Z. G. Wang, S. Qu, B. Cui, A. M. Wowchak, A. M. Dabiran, and P. P. Chow, Journal of Applied Physics 109 (9), 093708 (2011).
    17 C. P. Chen, M. Y. Ke, C. C. Liu, Y. J. Chang, F. H. Yang, and J. J. Huang, Appl. Phys. Lett. 91 (9), 091107 (2007).
    18 L. C. Zhang, Q. S. Li, L. Shang, F. F. Wang, C. Qu, and F. Z. Zhao, Optics Express 21 (14), 16578 (2013).
    19 L. C. Zhang, Q. S. Li, L. Shang, Z. J. Zhang, R. Z. Huang, and F. Z. Zhao, Journal of Physics D: Applied Physics 45 (48), 485103 (2012).
    20 X. M. Mo, H. Long, H. N. Wang, S. Z. Li, Z. Chen, J. W. Wan, Y. M. Feng, Y. P. Liu, Y. F. Ouyang, and G. J. Fang, Appl. Phys. Lett. 105 (6), 063505 (2014).
    21 H. H. Huang, G. J. Fang, Y. Li, S. Z. Li, X. M. Mo, H. Long, H. N. Wang, David L. Carroll, and X. Z. Zhao, Appl. Phys. Lett. 100 (23), 233502 (2012).
    22 C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, Optics Express 23 (12), 15565 (2015).
    23 Q. Qiao, C. X. Shan, J. Zheng, B. H. Li, Z. Z. Zhang, and D. Z. Shen, Journal of Luminescence 134, 754 (2013).
    24 S. H. Park, S. Y. An, Y. H. Mun, H. W. Kim, and C. M. Lee, Journal of Materials Science: Materials in Electronics 24 (12), 4906 (2013).
    25 W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, Appl. Phys. Lett. 101 (14), 142101 (2012).
    26 C. F. Du, C. H. Lee, C. T. Cheng, K. H. Lin, J. K. Sheu, and H. C. Hsu, Nanoscale Res. Lett. 9 (2014).
    27 G. Y. Zhu, C. X. Xu, Y. Lin, Z. L. Shi, J. T. Li, T. Ding, Z. S. Tian, and G. F. Chen, Appl. Phys. Lett. 101 (4) (2012).
    28 L. C. Zhang, F. Z. Zhao, F. F. Wang, and Q. S. Li, Chinese Physics B 22 (12) (2013).
    29 X. H. Li, Y. Zhang, and X. J. Ren, Optics Express 17 (11), 8735 (2009).
    30 A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, Appl. Phys. Lett. 90 (23) (2007).
    31 J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, Nanotechnology 17 (17), 4391 (2006).
    32 W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G. Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, Nanoscale 5 (18), 8634 (2013).
    33 Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, Nanoscale 8 (8), 4463 (2016).
    34 M. M. Jiang, B. Zhao, H. Y. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, Nanoscale 6 (3), 1354 (2014).
    35 T. C. Chiang, C. Y. Chiu, T. F. Dai, Y. J. Hung, and H. C. Hsu, Opt Mater Express 7 (2), 313 (2017).
    36 C. W. Lai, J. An, and H. C. Ong, Appl. Phys. Lett. 86 (25) (2005).
    37 C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, Appl Phys Express 5 (6) (2012).
    38 J. F. Lu, J. T. Li, C. X. Xu, Y. Li, J. Dai, Y. Y. Wang, Y. Lin, and S. F. Wang, ACS Appl Mater Interfaces 6 (20), 18301 (2014).
    39 M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, Acs Nano 8 (1), 834 (2014).
    40 W. P. Cai, H. Hofmeister, and T. Rainer, Physica E 11 (4), 339 (2001).
    41 Q. Li, X. F. Li, and J. H. Zhang, Journal of Alloys and Compounds 572, 175 (2013).
    42 S. Xu and Z. L. Wang, Nano Res 4 (11), 1013 (2011).
    43 A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, Prog Quant Electron 34 (4), 191 (2010).
    44 张跃, 一维氧化锌纳米材料. (科学出版社, 2010).
    45 Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang and, and Y. Zhang, Adv. Funct. Mater. 14, 943 (2004).
    46 Archana S. Kamble, Bhavesh B. Sinha, Kookchae Chung, Myeng G. Gil, Vishal Burungale, Chan-Jin Park, Jin H. Kim, and Pramod S. Patil, Electrochimica Acta 149, 386 (2014).
    47 B. X. Lin, Z. X. Fu, Y. B. Jia, and G. H. Liao, Journal of The Electrochemical Society 148 (3), G110 (2001).
    48 B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79 (7), 943 (2001).
    49 K. A. Willets and R. P. Van Duyne, Annual review of physical chemistry 58, 267 (2007).
    50 David Bl´azquez S´anchez, The Surface Plasmon Resonance of Supported Noble Metal Nanoparticles: Characterization, Laser Tailoring, and SERS Application. (2007).
    51 L. Sun, P. Chen, and L. Lin, in Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, edited by Mark T. Stauffer (InTech, Rijeka, 2016), p. Ch. 18.
    52 T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, J Phys Chem B 103 (45), 9846 (1999).
    53 Paul Mulvaney, Advanced Materials 8 (8), 699 (1996).
    54 M. Kerker, D. S. Wang, and H. Chew, Appl Optics 19 (19), 3373 (1980).
    55 T. Vartanyan, J. Bosbach, F. Stietz, and F. Trager, Appl Phys B-Lasers O 73 (4), 391 (2001).
    56 T. Yamaguchi, S. Yoshida, and A. Kinbara, Thin Solid Films 21 (1974).
    57 E. Fred Schubert, Light-Emitting Diodes. (2006).
    58 D. A. Neamen, Semiconductor Physics and Devices: Basic Principles. (2011).
    59 Y. Zhang and D. S. Diao, Chinese Phys Lett 26 (3) (2009).
    60 R. Schlaf, H. Murata, and Z. H. Kafafi, J Electron Spectrosc 120 (1-3), 149 (2001).
    61 S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn J Appl Phys 1 31 (5A), 1258 (1992).
    62 J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, Appl. Phys. Lett. 74 (16), 2340 (1999).
    63 C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, Appl. Phys. Lett. 92 (22) (2008).
    64 H. C. Hsu, G. M. Hsu, Y. S. Lai, Z. C. Feng, S. Y. Tseng, A. Lundskog, U. Forsberg, E. Janzen, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 101 (12) (2012).
    65 Aurangzeb Khan, J. Pak. Mater. Soc 4, 5 (2010).
    66 Detlef W. Bahnemann, Claudius Kormann, and Michael R. Hoffmann, The Journal of Physical Chemistry 91 (14), 3789 (1987).
    67 Vladimir A. Fonoberov and Alexander A. Balandin, Physical Review B 70 (19), 195410 (2004).
    68 C. Zhang, C. E. Marvinney, H. Y. Xu, W. Z. Liu, C. L. Wang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu, Nanoscale 7 (3), 1073 (2015).
    69 C. Chen, J. W. Chen, J. Zhang, S. Wang, W. Zhang, R. L. Liang, J. N. Dai, and C. Q. Chen, Nanoscale Res. Lett. 11 (2016).
    70 X. Ren, J. Cheng, S. Zhang, X. Li, T. Rao, L. Huo, J. Hou, and W. C. Choy, Small 12 (37), 5200 (2016).
    71 W. Z. Liu, H. Y. Xu, S. Y. Yan, C. Zhang, L. L. Wang, C. L. Wang, L. Yang, X. H. Wang, L. X. Zhang, J. N. Wang, and Y. C. Liu, ACS Applied Materials & Interfaces 8 (3), 1653 (2016).
    72 T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, Appl. Phys. Lett. 99 (8), 081902 (2011).
    73 Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, Scientific Reports 6, 22659 (2016).
    74 L. Yang, W. Z. Liu, H. Y. Xu, J. G. Ma, C. Zhang, C. Y. Liu, Z. Q. Wang, and Y. C. Liu, Journal of Materials Chemistry C 5 (13), 3288 (2017).
    75 P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, Appl. Phys. Lett. 92 (4), 041119 (2008).
    76 C. Chen, J. W. Chen, J. Zhang, S. Wang, W. Zhang, R. L. Liang, J. N. Dai, and C. Q. Chen, Nanoscale Res. Lett. 11 (1), 480 (2016).
    77 W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, Journal of Applied Physics 100 (2), 026103 (2006).
    78 B. J. Lawrie, R. F. Haglund, and R. Mu, Optics Express 17 (4), 2565 (2009).

    無法下載圖示 校內:2022-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE