簡易檢索 / 詳目顯示

研究生: 洪偉哲
Hong, Wei-Zhe
論文名稱: 水熱法製備n-BaTiO3/p-BiFeO3異質接面膜及其光催化應用
Hydrothermal Fabrication of n-BaTiO3/p-BiFeO3 Heterojunction Films and Their Photocatalytic Applications
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 77
中文關鍵詞: 水熱法BaTiO3 奈米柱陣列BiFeO3薄膜異質接面薄膜壓電輔助光催化水解
外文關鍵詞: hydrothermal synthesis, BaTiO3 nanorod array film, BiFeO3 film, heterojunction film, piezoelectricity-enhanced photoelectrochemical water splitting
相關次數: 點閱:43下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出利用水熱法在氟摻雜氧化錫基板上製備 p-BiFeO3 (BFO)−n-BaTiO3 (BTO)異質接面薄膜,以及其壓電輔助光電化學 (PEC) 之應用。 純相BTO奈米柱陣列薄膜經由兩步驟水熱法進行合成,而純相BFO薄膜也成功地透過水熱法於旋轉塗佈製備的晶種層上合成。 此外透過BTO奈米柱陣列薄膜與BFO前驅物溶液一起進行水熱反應,成功合成p-BFO−n-BTO異質接面薄膜。
    透過X光繞射分析和Rietveld分析對樣品進行相鑑定以及研究復合材料中BTO與BFO各自的比例。 透過掃描式電子顯微鏡和電子探針之能量色散光譜(EDS)研究材料的微觀形貌和鑑定組成元素之分佈。 透過紫外線光電子能譜(UPS)研究材料的功函數和價帶能階。 透過紫外線-可見光分光光度計研究了材料的光學特性。 材料的導電型通過Mott−Schottky實驗以及斷路電位量測進行確認。 此外經由Mott−Schottky分析研究了平能帶電壓和電荷載子濃度。 透過電化學阻抗頻譜分析研究材料的阻抗和界面性質。 透過線性掃描伏安法測量材料的光電流並計算其ABPE效率,證明復合材料的壓電輔助光催化水解之性能,並且應用於循環試驗表明了材料的穩定性。 並且基於前述分析結果建立了材料的能帶結構圖,用以解釋促使PEC性能提升的機制。

    This study reports hydrothermal approaches for the fabrication of p-BiFeO3 (BFO)−n-BaTiO3 (BTO) heterojunction films on fluorine doped tin oxide substrates and their piezoelectricity-enhanced photoelectrochemical (PEC) applications. The individual BTO nanorod array films were synthesized through two-step hydrothermal reactions and the individual BFO films were also hydrothermally fabricated on BFO spin-coating seed layers. The resulting BTO nanorod array films together with BFO precursor solutions were subjected to hydrothermal reactions to obtain the p-BFO−n-BTO heterojunction films.
    The structures and crystallinity of the samples and atomic ratios of the constitutive components in the composites were studied through X-ray diffraction and Rietveld refinement analysis, respectively. The morphology and constitutive elements were determined using scanning electron microscopy and electron-probe energy dispersive spectroscopy, respectively. The work functions and valence band maximum of the samples were determined using ultraviolet photoelectron spectroscopy. The associated optical properties were explored using Ultraviolet−visible spectroscopy. The conductivity types of the materials were determined through Mott−Schottky and open-circuit potential measurements. The flat band potential and carrier concentrations were also investigated through Mott−Schottky analysis. The impedance of the materials and interfacial properties were analyzed using electrochemical impedance spectroscopy. The photocurrent was measured through linear sweep voltammetry and associated applied bias photon-to-current efficiency was calculated to elucidate the piezoelectricity-enhanced PEC performance of the composite samples; a cycling study indicated their reliability. An energy band diagram was constructed to illustrate the mechanism of the observed PEC performance.

    摘要 II Abstract III Contents V Table Contents IX Figure Contents X Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.1.1 Motivation 1 1.1.2 Introduction of photocatalysis 2 1.1.3 Photocatalysis water splitting 3 1.1.4 Mechanism of photocatalytic water splitting 4 1.1.5 Enhancement of photocatalysis applications 6 1.1.6 Hydrothermal method 12 1.2 BaTiO3 14 1.2.1 Introduction of BaTiO3 14 1.2.2 BaTiO3 synthesis route 15 1.3 BiFeO3 18 1.3.1 Introduction of BiFeO3 18 1.3.2 Synthetic strategy of BFO 19 1.3.3 Hydrothermal synthesis of BFO 23 1.4 Photoelectrochemical (PEC) application 26 1.4.1 PEC application 26 Chapter 2 Experimental methods 27 2.1 Material 27 2.1.1 Substrate 27 2.1.2 Chemical for the hydrothermal process of the BTO 28 2.1.3 Chemical for the process of the BFO seed layer 29 2.1.4 Chemical for the hydrothermal process of the BFO 30 2.1.5 Chemical for Mott-Schottky Measurement 31 2.1.6 Chemical for Photodegradation Measurement 31 2.2 Experimental procedure 32 2.2.1 Substrate cleaning 32 2.2.2 Fabrication of BTO film 32 2.2.3 Hydrothermal process for the BFO film 34 2.2.4 Fabrication of the BTO–BFO heterojunction 35 2.3 Characterization 36 2.3.1 X-ray diffraction (XRD) analysis 36 2.3.2 Scanning Electron Microscope (SEM) 37 2.3.3 Mott-Schottky Measurement 38 2.3.4 Photoelectrochemical (PEC) measurement 38 2.3.5 Ultraviolet-Visible (UV-Vis) Spectroscopy 39 Chapter 3 Results and discussion 40 3.1 BaTiO3 (BTO) synthesis 40 3.1.1 Phase identification of BTO 40 3.1.2 The morphology of BaTiO3 41 3.2 BiFeO3 (BFO) synthesis 42 3.2.1 XRD phase identification 42 3.2.2 Morphology of BFO 43 3.3 BTO-BFO heterojunction 44 3.3.1 BTO-BFO heterojunction phase identification 44 3.3.2 Morphology of BTO-BFO heterojunction 47 3.4 Properties measurement 50 3.4.1 Open circuit potential 50 3.4.3 Mott-Schottky measurement 52 3.4.4 Electrochemical Impedance Spectroscopy (EIS) 54 3.5 Band structure 56 3.5.1 UV-Vis 56 3.5.2 Ultraviolet photoelectron spectroscopy (UPS) 58 3.5.3 Energy band diagram 62 3.6 Application 64 3.6.1 PEC measurement and ABPE efficiency 64 3.6.2 PEC Cycling test 66 3.6.3 Mechanism model of PEC 67 Chapter 4 Conclusions and future work 69 4.1 Conclusions 69 4.1.1 BTO synthesis 69 4.1.2 BFO synthesis 69 4.1.3 BTO - BFO heterojunction 69 4.1.4 OCP measurement 69 4.1.5 Mott-Schottky measurement 70 4.1.6 EIS 70 4.1.7 UV-Vis spectroscopy 70 4.1.8 UPS 70 4.1.9 Energy band diagram 70 4.1.10 PEC measurement and ABPE efficiency 71 4.2 Future work 71 References 72

    1. Z. Salameh, Chapter 4 - Energy Storage, in Renewable Energy System Design, Z. Salameh, Editor. 2014, Academic Press: Boston. p. 201-298.
    2. Z. Chen, H. Dinh, and E. Miller. Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. 2013.
    3. C. Decavoli, C. L. Boldrini, N. Manfredi, and A. Abbotto, "Molecular Organic Sensitizers for Photoelectrochemical Water Splitting," European Journal of Inorganic Chemistry, 2020(11-12), 978-999, (2020).
    4. J. Xie, Y. Cao, D. Jia, Y. Li, K. Wang, and H. Xu, "In situ solid-state fabrication of hybrid AgCl/AgI/AgIO3 with improved UV-to-visible photocatalytic performance," Sci Rep, 7(1), 12365, (2017).
    5. S. Irfan, Y. Shen, S. Rizwan, H.-C. Wang, S. B. Khan, C.-W. Nan, and R. J. Xie, "Band-Gap Engineering and Enhanced Photocatalytic Activity of Sm and Mn Doped BiFeO3Nanoparticles," Journal of the American Ceramic Society, 100(1), 31-40, (2017).
    6. J. Lv, X. Chen, S. Chen, H. Li, and H. Deng, "A visible light induced ultrasensitive photoelectrochemical sensor based on Cu3Mo2O9/BaTiO3 p–n heterojunction for detecting oxytetracycline," Journal of Electroanalytical Chemistry, 842, 161-167, (2019).
    7. S. Mishra, L. Unnikrishnan, S. K. Nayak, and S. Mohanty, "Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review," Macromolecular Materials and Engineering, 304(1), 1800463, (2019).
    8. C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, "Piezoelectric and ferroelectric materials and structures for energy harvesting applications," Energy Environ. Sci., 7(1), 25-44, (2014).
    9. K. Byrappa and M. Yoshimura, Preface, in Handbook of Hydrothermal Technology, M. Y. K. Byrappa, Editor. 2001, William Andrew Publishing: Norwich, NY. p. ix-xiv.
    10. C. Chen, J. Cheng, S. Yu, L. Che, and Z. Meng, "Hydrothermal synthesis of perovskite bismuth ferrite crystallites," Journal of Crystal Growth, 291(1), 135-139, (2006).
    11. S. Irfan, Z. Zhuanghao, F. Li, Y.-X. Chen, G.-X. Liang, J.-T. Luo, and F. Ping, "Critical review: Bismuth ferrite as an emerging visible light active nanostructured photocatalyst," Journal of Materials Research and Technology, 8(6), 6375-6389, (2019).
    12. T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, "Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder," Japanese Journal of Applied Physics, 46(No. 4), L97-L98, (2007).
    13. B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y. W. Harn, Y. Chen, and Z. Lin, "Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties," Chem Soc Rev, 48(4), 1194-1228, (2019).
    14. M. Takeuchi, T. Itoh, and H. Nagasaka, "Dielectric properties of sputtered TiO2 films," Thin Solid Films, 51(1), 83-88, (1978).
    15. D. Damjanovic, "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics," Reports on Progress in Physics, 61(9), 1267-1324, (1998).
    16. K. Kajiyoshi, Y. Sakabe, and M. Yoshimura, "Electrical Properties of BaTiO3 Thin Film Grown by the Hydrothermal-Electrochemical Method," Japanese Journal of Applied Physics, 36(Part 1, No. 3A), 1209-1215, (1997).
    17. Y. Wang, H. Yang, X. Sun, H. Zhang, and T. Xian, "Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation," Materials Research Bulletin, 124, 110754, (2020).
    18. M. T. Buscaglia, M. Bassoli, V. Buscaglia, and R. Alessio, "Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2," Journal of the American Ceramic Society, 88(9), 2374-2379, (2005).
    19. Z. Zhou, C. C. Bowland, B. A. Patterson, M. H. Malakooti, and H. A. Sodano, "Conformal BaTiO3 Films with High Piezoelectric Coupling through an Optimized Hydrothermal Synthesis," ACS Appl Mater Interfaces, 8(33), 21446-21453, (2016).
    20. S. Chatterjee, A. Bera, and A. J. Pal, "p-i-n heterojunctions with BiFeO3 perovskite nanoparticles and p- and n-type oxides: photovoltaic properties," ACS Appl Mater Interfaces, 6(22), 20479-20486, (2014).
    21. Q. Xu, M. Sobhan, Q. Yang, F. Anariba, K. P. Ong, and P. Wu, "The role of Bi vacancies in the electrical conduction of BiFeO3: a first-principles approach," Dalton Trans, 43(28), 10787-10793, (2014).
    22. K. I. Doig, F. Aguesse, A. K. Axelsson, N. M. Alford, S. Nawaz, V. R. Palkar, S. P. P. Jones, R. D. Johnson, R. A. Synowicki, and J. Lloyd-Hughes, "Coherent magnon and acoustic phonon dynamics in tetragonal and rare-earth-doped BiFeO3 multiferroic thin films," Physical Review B, 88(9), 094425, (2013).
    23. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, "Epitaxial BiFeO3 multiferroic thin film heterostructures," Science, 299(5613), 1719-1722, (2003).
    24. X. Ren, H. Fan, Y. Zhao, and Z. Liu, "Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester," ACS Appl Mater Interfaces, 8(39), 26190-26197, (2016).
    25. M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, "Ferroelectricity in a pure BiFeO3 ceramic," Applied Physics Letters, 76(19), 2764-2766, (2000).
    26. J. Silva, A. Reyes, H. Esparza, H. Camacho, and L. Fuentes, "BiFeO3: A Review on Synthesis, Doping and Crystal Structure," Integrated Ferroelectrics, 126(1), 47-59, (2011).
    27. K. S. Nalwa, A. Garg, and A. Upadhyaya, "Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite," Materials Letters, 62(6-7), 878-881, (2008).
    28. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, "Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering," Applied Physics Letters, 84(10), 1731-1733, (2004).
    29. S. Vijayanand, H. S. Potdar, and P. A. Joy, "Origin of high room temperature ferromagnetic moment of nanocrystalline multiferroic BiFeO3," Applied Physics Letters, 94(18), 182507, (2009).
    30. A. Azam, A. Jawad, A. S. Ahmed, M. Chaman, and A. H. Naqvi, "Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method," Journal of Alloys and Compounds, 509(6), 2909-2913, (2011).
    31. S. Farhadi and M. Zaidi, "Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: A novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions," Journal of Molecular Catalysis A: Chemical, 299(1-2), 18-25, (2009).
    32. T. T. Carvalho and P. B. Tavares, "Synthesis and thermodynamic stability of multiferroic BiFeO3," Materials Letters, 62(24), 3984-3986, (2008).
    33. Y. Wang, Q.-H. Jiang, H.-C. He, and C.-W. Nan, "Multiferroic BiFeO3 thin films prepared via a simple sol-gel method," Applied Physics Letters, 88(14), 142503, (2006).
    34. M. Tyagi, R. Chatterjee, and P. Sharma, "Structural, optical and ferroelectric behavior of pure BiFeO3 thin films synthesized by the sol–gel method," Journal of Materials Science: Materials in Electronics, 26(3), 1987-1992, (2015).
    35. J. Prado-Gonjal, M. E. Villafuerte-Castrejón, L. Fuentes, and E. Morán, "Microwave–hydrothermal synthesis of the multiferroic BiFeO3," Materials Research Bulletin, 44(8), 1734-1737, (2009).
    36. N. Takeno, "Atlas of Eh-pH diagrams - Intercomparison of thermodynamic databases. Open File Report of GSJ," no. 419, Geological Survey of Japan, AIST, (2005).
    37. B. L. Gersten, 9 - Growth of Multicomponent Perovskite Oxide Crystals: Synthesis Conditions for the Hyrothermal Growth of Ferroelectric Powders, in Crystal Growth Technology, K. Byrappa, T. Ohachi, W. Michaeli, H. Warlimont, and E. Weber, Editors. 2003, William Andrew Publishing: Norwich, NY. p. 299-333.
    38. A. P. R. Arazas, C. C. Wu, and K. S. Chang, "Hydrothermal fabrication and analysis of piezotronic-related properties of BiFeO3 nanorods," Ceramics International, 44(12), 14158-14162, (2018).
    39. F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B. J. Nelson, and S. Pane, "Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation," iScience, 4, 236-246, (2018).
    40. S. Gopalakrishnan and K. Jeganathan, "Facile fabrication of silicon nanowires as photocathode for visible-light induced photoelectrochemical water splitting," International Journal of Hydrogen Energy, 42(36), 22671-22676, (2017).
    41. L. Yao, Z. Pan, J. Zhai, and H. H. Chen, "Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors," Nanoscale, 9(12), 4255-4264, (2017).
    42. B. H. Toby, "R factors in Rietveld analysis: How good is good enough?," Powder Diffraction, 21(1), 67-70, (2012).
    43. J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, "p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements," Nano Lett, 17(3), 1529-1537, (2017).
    44. Y. Yano, K. Iijima, Y. Daitoh, T. Terashima, Y. Bando, Y. Watanabe, H. Kasatani, and H. Terauchi, "Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation," Journal of Applied Physics, 76(12), 7833-7838, (1994).
    45. A. Syed, A. Siddaramanna, A. M. Elgorban, D. A. Hakeem, and G. Nagaraju, "Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior," Magnetochemistry, 6(3), 42, (2020).
    46. H. Wang, Y. Zheng, M.-Q. Cai, H. Huang, and H. L. W. Chan, "First-principles study on the electronic and optical properties of BiFeO3," Solid State Communications, 149(15-16), 641-644, (2009).
    47. A. Ianculescu, M. Gartner, B. Despax, V. Bley, T. Lebey, R. Gavrilă, and M. Modreanu, "Optical characterization and microstructure of BaTiO3 thin films obtained by RF-magnetron sputtering," Applied Surface Science, 253(1), 344-348, (2006).
    48. V. Kumar, S. Kr. Sharma, T. P. Sharma, and V. Singh, "Band gap determination in thick films from reflectance measurements," Optical Materials, 12(1), 115-119, (1999).
    49. H. Sim, J. Lee, S. Cho, E.-S. Cho, and S. J. Kwon, "A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application," JSTS:Journal of Semiconductor Technology and Science, 15(2), 267-275, (2015).
    50. S. Zhang, D. Chen, Z. Liu, M. Ruan, and Z. Guo, "Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy," Applied Catalysis B: Environmental, 284, 119686, (2021).
    51. S. Das, P. Fourmont, D. Benetti, S. G. Cloutier, R. Nechache, Z. M. Wang, and F. Rosei, "High performance BiFeO3 ferroelectric nanostructured photocathodes," J Chem Phys, 153(8), 084705, (2020).

    下載圖示 校內:2024-10-01公開
    校外:2024-10-01公開
    QR CODE